Dry Cell or LeClanche Cell

Dry Cells

Invented in the 1860 's the common dry cell or LeClanche cell, has become a familiar household item. An active zinc anode in the form of a can house a mixture of MnO_{2} and an acidic electrolytic paste, consisting of $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{ZnCl}_{2}, \mathrm{H}_{2} \mathrm{O}$ and starch powdered graphite improves conductivity. The inactive cathode is a graphite rod.

Anode (oxidation)
$\mathrm{Zn}_{(\mathrm{s})} \rightarrow \mathrm{Zn}^{2+}{ }_{\text {(aq) }}=2 \mathrm{e}-$
Cathode (reduction). The cathodic half-reaction is complex and even today, is still being studied. $\mathrm{MnO}_{2(s)}$ is reduced to $\mathrm{Mn}_{2} \mathrm{O}_{3(s)}$ through a series of steps that may involve the presence of Mn^{2+} and an acid-base reaction between $\mathrm{NH}_{4}{ }^{+}$and OH :
$2 \mathrm{MnO}_{2(s)}+2 \mathrm{NH}_{4}^{+}{ }_{(\text {aq })}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}_{2} \mathrm{O}_{3(\mathrm{~s})}+2 \mathrm{NH}_{3(\text { (aq })}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
The ammonia, some of which may be gaseous, forms a complex ion with Zn^{2+}, which crystallize in contact Cl^{-}ion:
$\mathrm{Zn}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{NH}_{3(\mathrm{aq})}+2 \mathrm{Cl}_{(\mathrm{aq})} \rightarrow \mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2(\mathrm{~s})}$

Overall Cell reaction:
$2 \mathrm{MnO}_{2(\mathrm{~s})}+2 \mathrm{NH}_{4} \mathrm{Cl}_{(a q)}+\mathrm{Zn}_{(\mathrm{s})} \rightarrow \mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{Mn}_{2} \mathrm{O}_{3(\mathrm{~s})} \quad \mathrm{E}_{\text {cell }}=1.5 \mathrm{~V}$
Uses: common household items, such as portable radios, toys, flashlights, Advantage; Inexpensive, safe, available in many sizes
Disadvantages: Athigh current drain, $\mathrm{NH}_{3(g)}$ builds up causing drop in voltage, short shelf life because zinc anode reacts with the acidicNH4+ ions.

INTRODUCTION

What is Fuel cell?

- A fuel cell is an electrochemical device that converts energy produced from a chemical reaction into electrical energy.
- More specifically it is an electrochemical device that combines hydrogen and oxygen to produce electricity, with water and heat as its byproduct.
- Chemical Energy \rightarrow Electrical Energy.

APPLICATIONS

- Can be used as power sources in remote areas.
- Can be used to provide off-grid power supplies.
- Can be applicable in both hybrid and electric vehicles.
- Waste water treatment plant and landfill.
- Cellular phone, laptop and computers.
- Hospitals, credit card centres and police stations.
- Buses, Car, Planes, Boats, Fork lift, Trains
- Vacuum cleaner.
- Telecommunication, MP3 players, etc.
Q. Calculate the equilibrium constant of the following reaction at 298 K :
FeSO4 $(\mathrm{aq})+\mathrm{Cd}(\mathrm{s}) \longleftrightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{CdCl} 2(\mathrm{aq})$
Given,
$\mathrm{E}^{\circ}{ }_{\mathrm{Cd} 2+/ \mathrm{Cd}}=-0.488 \mathrm{~V}$
$\mathrm{E}^{\mathrm{O}}{ }_{\mathrm{Fe} 2+/ \mathrm{Fe}}=-0.469 \mathrm{~V}$
Q. A zinc rod is placed in 0.1 M solution of zinc sulphate at $\mathbf{2 5 o C}$.

Asssuming that the salt is dissociated to the extent of 95
percent at this solution, calculate the potential of the electrode at this temperature:
Given, $\mathrm{E}_{\mathrm{Zn} 2+/ \mathrm{Zn}}=-0.76 \mathrm{~V}$

