Anthracene

Resonance in Anthracene

Resonance energy 84 kcal mol⁻¹, average 28, less aromatic than benzene

200 Sugert

Synthesis of anthracene

- (i) By Friedel Crafts reaction
- (a)

$$\begin{array}{c}
\text{(b)} \\
+ & \text{Br-C-Br} \\
+ & \text{Br-C-Br}
\end{array}
+
\begin{array}{c}
\text{AlCl}_3 \\
\hline
-4HBr
\end{array}$$

Acetylene tetrabromide

(ii) By Haworth synthesis

(iii) By Diels-Alder reaction

1,4- Naphthaquinone

Attack at C-9 Anthracene Leaves two benzene intact Loss of RE=84-72 =12 kcal -H+ H Substitution product **Addition product**

The attack at 1-. 2- position forms a carbocation having a naphthalene moiety whereas attack at 9-position forms a carbocation with two benzene rings. The resonance stabilization in the latter will be more since the total resonance energy of two benzene rings is greater than that of a naphthalene molecule.

Chemical Reactions

