EQUILIBRIUM POINTS AND PHASE PLANE

PRESENTED BY: DR. RAJIB BISWAKARMA

Assistant Professor
DEPTT. OF MATHEMATICS
Silapathar College

Defor Those Plane: - A pair of first order ordinary differential equations can be reduced to a The Solution ghaph of his Beduced O.D.E is called we shall consider a System of me form phase plane. dx = P(xy) dy = g(a,y) dy/d1 = 8(2,y) = R(2,y) (Say) dy = R(x,y) -If we solve eq" & Then we get a phone plane. xample: - Find The phase plane curve of The System $\frac{dx}{dt} = y$, $\frac{dy}{dt} = -x$.

Netron dy at =
$$-\frac{x}{y}$$

Netron dy = $\frac{dy}{dx} = -\frac{x}{y}$

2) $\frac{dy}{dx} = -\frac{x}{y}$

1) $\frac{dy}{dx} = -\frac{x}{y}$

2) $\frac{dy}{dx} = -\frac{x}{y}$

1) $\frac{dy}{dx} = -\frac{x}{y}$

2) $\frac{dy}{dx} = -\frac{x}{y}$

3) $\frac{dy}{dx} = -\frac{x}{y}$

4) $\frac{dy}{dx} = -\frac{x}{y}$

2) $\frac{dy}{dx} = -\frac{x}{y}$

3) $\frac{dy}{dx} = -\frac{x}{y}$

4) $\frac{dy}{dx} = -\frac{x}{y}$

2) $\frac{dy}{dx} = -\frac{x}{y}$

3) $\frac{dy}{dx} = -\frac{x}{y}$

4) $\frac{dy}{dx} = -\frac{x}{y}$

2) $\frac{dy}{dx} = -\frac{x}{y}$

3) $\frac{dy}{dx} = -\frac{x}{y}$

4) $\frac{dy}{dx} = -\frac{x}{y}$

2) $\frac{dy}{dx} = -\frac{x}{y}$

3) $\frac{dy}{dx} = -\frac{x}{y}$

4) $\frac{dy}{dx} = -\frac{x}{y}$

5) $\frac{dy}{dx} = -\frac{x}{y}$

6) $\frac{dy}{dx} = -\frac{x}{y}$

7) $\frac{dy}{dx} = -\frac{x}{y}$

8) $\frac{dy}{dx} = -\frac{x}{y}$

8) $\frac{dy}{dx} = -\frac{x}{y}$

1) $\frac{dy}{dx} = -\frac{x}{y}$

2) $\frac{dy}{dx} = -\frac{x}{y}$

3) $\frac{dy}{dx} = -\frac{x}{y}$

4) $\frac{dy}{dx} = -\frac{x}{y}$

6) $\frac{dy}{dx} = -\frac{x}{y}$

7) $\frac{dy}{dx} = -\frac{x}{y}$

Say amily of circle

Trajectories and The phase-plane diagram: Let us consider xy-plane, we obtain a direction vector for any solution 2 dequadrant of 2st quadrant of the yyo, in quadrant of the solution o n quadran grun byne 24 =- x <0 so y is docreasing. arrow The phase plane trajectories, more in a clockwise direction Equilibraium point or Cristical or Singular point: Let. da = p(x,y), dy = s(r,y), be ne pair of 187 order dt = diff. eq. which ton a point (20170) at & (Ro190) =0 is called $p(x_0, y_0) = 0$, and a equilibrium poit.

THANK YOU