~

\

(i) sup(Sw T)=max {sup S, sup T}

ji) inf(S©T)=min{inf S, inf T}

fSand T are two non-empty subset of R then
sup(SN T)# min{supsS, supT} -

Let S be any non-empty subset of R having
gupremum and let T={ix:x &S} then Tis
pounded above sup T=2AsupS,VvVi>0.

Let S be a non-empty set of Rwhich has
supremum and let T={ix: xS} then Tis

pounded below v2 <0 and infT = AsupS.

sup{er:x<a}=a foreach gcR.

Finite union and arbitrary intersection of
bounded subsets of R is bounded.

A subset of bounded set is bounded.

If Sand T are two non empty bounded subsets
of R. Then,

(i) supi{x+y:xeS,yeT}=supS+supT

(i) inf{x+y:xeS,yeT}=infS+infT

(i) sup{x-y:xeS,yeT}=supS-infT
inf{x-y:xeS,yeT}=infS-supT

(ivy sup{xy:xeS,yeT}=supSsupT

where S and T are bounded subset of
positive real numbers.

(v inf{xy:xeS,yeT}=infSinfT

where S and T are bounded subset of
positive real numbers.

SEQUENCES OF REAL NUMBERS

Amap from N to R defines a sequence of real
numbers when the images are arranged in
natural order of natural number i.e., starting

with images of n is followed by that of (n + 1)

Le, f:N>Risa sequence of real numbers
and (f (n))= (£ (1), £(2),...) we write etc.
(f(n)) =(a,)(b,), (w,), (v,) etc. vneN

(a,) = (a,a,,q,, o)

Range set of a Sequence: The range set of &
Sequence is the set consisting of all distinct

.

elements of a sequence and without regard
to the position term. Thus the range may be
finite or infinite set i.e., the range set of

sequence (u,)is given by {u :neN}or
simply by R(u,).
Some Important Example of Sequence:
2, n=1lor prirhe
@) %= {n, else

a = 2, n =1 or prime
" |p, p|n& pis the least prime

(i) a,,=a,+a,,,a =1 a,=1
1
(lll) an+2 = E(an + am-l)

where a, & a, given.

Bounded Sequence: A sequence (u,) is
defined as bounded if its range set is bounded.

Hence (u,) is bounded if there exist real
numbers gk’ and k such that
k'<u, <k, VneN.

| OR
If there exist k > 0 such that |u,|<k,VneN.

Note:

(i) Supremum and infimum of the range
set is the supremum and infimum of the

sequence.

(ii) If the range of the sequence (a,)is
finite then there exist ¢ € R such that
a, =a for infinitely many values of n
however converse need not be true.

Monotonic Sequence: Let (a, ) be a sequence

of real numbers (a,) is monotonic if either

a, <a,,,vneN (Then the sequence is called

monotonically increasing or non-decreasing
OR

a, =Q,., Yne N (Then the sequence is called
monotonically decreasing or non-increasing).

If a, <@, YneN then (a )is called stricly
increasing or increasing sequence.

If a, > @, VR €N, then (a,)is called strictly
decreasing or decreasing sequence.

(e R A A Ak
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Limit Point of a Sequence: A real number p
is said to be a limit point or a cluster point of
a sequence if every neighbourhood of p
contains an infinite number of elements of
the given sequence.

In other words, a real number p is a limit point
of a sequence (a,) if for any £>0,
a,e(p-¢ p+¢) for infinitely many values

of n.
Remark: A real number p is not a limit point

of a sequence (a,), if there exists at least
one neighbourhood of p which contains only

finite number of elements of (a,).

Existence of A Limit Point :

Bolzano Weierstrass Theorem: Every bounded
sequence has a limit point.

Subsequence: Subsequence of a sequence is
defined with the help of sequence of natural

number. Consider a map f:N— N defined

by f(k)=n, and let (n,) be a strictly
increasing sequence of natural numbers.

Then for any sequence (a,,), the sequence

<a,,k ) is defined as a subsequence of (a,).

Complementary Subsequences: Let (ank>
and <a,,k, ) are subsequence of (a, ) then define
S, ={n, |n, eN} and S, ={n, |n, €N}, then
<ank> and <a,,y> are complementary
subsequences if :

@ SUS, =N

i) SNsS,=¢

Limit of a Sequence : Let (a,) be a sequence
of real number and ;| be a real number,
(IeR)then we say | is the limit of the

sequence (a,) if for any £>0,3meN such

that |a, —l|<e, Vn>m.

Symbolically, we write it as lima, =1
ora, >lasn_q.

Some Remarks:

(i) L1r¥11t of a Convergent sequence is
unique.

(iii) If |u,| <[v,], VN2 m and limy, |-

N—sw

(i) lim|u, -1|=0<limu, =]

n—w R=»c0

0 thy,

lim’un|=0, where lu,,l denoteS th

absolute value of u, .
(iv) If lima, =a and a, >b,vn gm,mem

n—o .

Then a>b(a,beR).

(v) A bounded sequence (a,) is Converge,
& it has unique limit point.

(vi Every bounded sequence hag "
convergent subsequence.

(vii) If each of the two subsequence <a2n-1>
and (a,,) of a sequence (a,) converges
to [. Then (a,)also converges to |.
(- (az,,_l) and <a2n> are complementary
subsequences of <an)).

(viii) If (a2n_1> and (a:,,,)‘ converges to

different limit then (an) cannot

converge.,

ADVANCED ANALYSIS OF A SEQUENCE:

Limit Superior: Let (a,) be a sequence of real
numbers which is bounded above.

Define b, =sup{a,, a,,...,a,,,, ...}
b, =sup{a,, a;,q,, ...}

. =supia,,a,,,a,.,,..}

n+l?

Then (b,)is defined which is monotonically
decreasing.

Then limit superior of (an)is d?noted by
man or }li_r)risupan and is defined &
inf{b,,bz,ba,b4,...} .

If (a,)is not bounded above. Then limit

superior of (q,)is defined as

ﬁan =limsup a, = +w

n—wx

a
Limit Inferior: Let (a,)be a sequence ol t®

numbers which is bounded below: P
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pefine ¢ =infia,a,,...a,,4q,,,..}
¢, =inf{a,,a,,...}

c, =infla,,a,,,,...}

Then ¢ <¢, <¢ <... i.e, (c,)is monotonically
increasing sequence.

Now, limit inferior of (a,)denoted by lima,
or }11_11} inf(a,.) is defined to be sup{cl,cz,c3,..}
and if {a,)is not bounded below. Then we
define lim a, = —o.

Convergent Sequence: A sequence (a,) is

said to be convergent iff limit superior is equal
to the limit inferior and they exist finitely i.e.

ﬁan =lim a, =l(leR), then { is called the
limit of the sequence (a,).

Divergent Sequence: A sequence (an> is said
to be divergent. If lim a, = lim a, =« (infinite)
or lima, = man =-—oo (infinite) .
Oscillatory Sequence: A sequence (q,) is
said to be oscillatory sequence if
lima, #lima, -

Finitely Oscillatory Sequence: A sequence

(a,) is said to oscillate finitely if both lim a,

and lim a, exist finitely and lim a, # lim a,.
Infinitely Oscillatory Sequence: A sequence
(a,) is said to be oscillate infinitely, if both

lima, and ﬁan exist infinitely and

lima, #lima, .

Examples : (an)=((‘1)n -n)
The Sequence of Natural Numbers: A

sequence (a,) is said to be sequence of

natural number if its range set contains only
natural numbers.

Results based on sequence of natural
numbers:

(i)  Every sequence of natural number has
to be bounded below and has infimum
in the range set.

\*-

(ii) If sequence of natural number has limit
point p. Then this p has to be natural

number & a, = p for infinite many value

of ni.e., there exist subsequence (a,,k)
which is a constant sequence such that
a, i.e., a sequence (a,) of N has a
limit point <« it has a constant

subsequence.

(iii) Sequence of natural number is
convergent iff it is eventually constant.

(iv) If a sequence of natural numbers is not
divergent then it has constant
subsequence.

Cauchy Sequence: A sequence (q, )is said to

be a Cauchy sequence if for any ¢ > 0, there
exists a positive integer m such that

la, —a,| <&, whenever n>m.

Some Important Theorems:

Cauchy's First Theorem on limits:

(a_1 +a.2+...~:-a,l]=0
n

Let lima, =0, then im

n—wo n—w

In General: Let ]'.li_xgan =1

Then,. lim

n—sw

(al +a2+...+a,,)_l
~ -

Cauchy’s Second Theorem on Limits:

If (a,)converges to I[(#0) and a, >0 then
lim(aa,...q,)’" =1

If all the terms of a sequence (a, ) are positive

. a,.
and if lim-—==
n—-n:na

. . l/n
exist. Then lim(a,)" also
n—o-x

n

exist and the two limits are equal. i.e.

lim(a,)”" =lim &1 | provided the later limit

n—so n—x
aYl

exist.
Cesaro's Theorem: Let lima, =a then

limb, =b where a,beR, then

n—w

lim a,b, +a,b, , +...+ab, _

n-—x n

a-b

Sandwich Theorem: Let (a,),(b,),(c,)are

n

sequence of real number such that

PNEre e .
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lima =[l=limc
a,<b,<c,,VneN and M4, nso "

tl1e11 1h11lhl==l_
If a,20,¥neN and lima, =1, then 1>0.

If (a,),(b,)be two sequence such that

n

a,<b,,vneN, then lima, <limb, .

If (a,) be a sequence of positive real numbers

such that limh.:l, where [<1 then

n—w
an

lima, =0

n—wm

Let liman =a, IMbn =b and <Sn>&(T> are

n—» n—w n

n

two sequences, where S, = max {a,,b,} and
T, =min{a,,b,}. Then the sequences (S,)

and (T,) are

convergent and

imS, =max{a, b} im7T, = min {a, b}

n—ow

Let (a,) be a sequence such that a, —>a.

Then a; — a®. However, the converse may
not be true.

For example, let (a,,)=<(—1)n>. Then
(af):(l,l,l,...), which converges to 1, but
(a,) does not converge to 1.

Let (a,)be a sequence such that a? - a?,

then |a,| >|a| as n > .

SERIES OF REAL NUMBERS

Definition: We know about arithmetic and
geometric series etc. A series of n terms is

denoted by the expression w, +u, +...+u, or

D u; . If the series has no last term, then such

i=1

series is called an infinite series.

Infinite Series: Let (a,) be a sequence of real

[}
numbers, Zan =, +a; +...+a,,; +... then
n=1

i.e. infinite sum of the members of the
sequence, is defined as series of real

numbers. It is also denoted by Zan :

1
For example: ZE , here (an) = <l>
. n '
Sequence of Partial Sums: Suppog

an infinite series then we define a

eZain
n-

. Sequ .
(S,) as follows: "
S, =q

S, =a, +a,

Sn =a1 +a2 +...+an ) a.nds()on
The sequence (S,) is called the Sequence
partial sums of the series Zan .

Convergent Series : A series Zan is said 1
be convergent, if the sequence (S, ) of parti.
sums of Zan is convergent and if }11_{51 S, =85

then Sis called the sum of the series Za,1 an

then we write it as S = Zan .

n=1
Divergent Series: The series Zan is saidt
be divergent, if the sequence (S, ) of parti

sums of Zan is divergent.

Oscillatory Series: The series ) a, is sa

to oscillatory, if the sequence (S,) of parti

sums of ) a, oscillates.
Necessary condition for convergence of

series: If the series Zan converge, the

lima, =0

n—aw

- Remark:

(i) Converse of the theorem need not b
true.

1 :
For example: Let ) a, =ZZ’ the:

liml =0 but Zl is not convergent
n—w n n

(i) 1f lma, =0 then Ya, can®
converge.
Telescopic Series:

Let (an) be a sequence of real numbers:

Define b, =a, -a,,, and ¢, =a,. %

n+1
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Then Zb,, and ZC,, are called telescopic
series.

If (S,)denote the sequence of partial sum of

the series b, .

Then 3, = Zb,

r=1
=b +b,+...+b,

=q,—-a, +a2_'a3 +...+an—an+1

=q, -a,,

Similarly if (t,,> denote the sequence of partial

sum of the series ch . Then t, =aq,, -a,.

Thus (S,) and (t,) are convergent iff (a,) is
convergent.

Thus ) b, and Y c, are convergent iff (a,)is
convergent. ’

Cauchy's General Principal of Convergence
A necessary and sufficient condition for a

series Zan to converge is that for each ¢ > 0,
there exists a positive integer m, such that ,

@y + @y + .o +a,| <& forall n>m.

Pringsheim's Theorem: If a series Zun of
positive monotonic decreasing terms
converges then not only u, - O0but also

nu, -0 asn—-w.

Series of Positive Real Numbers: Series with
positive terms are the simplest and the most
important type of series one comes across.
The simplicity arises mainly from the fact
that the sequence of its partial sums is
monotonically increasing.

Remark:

() A positive term series converges iff the
sequence of its partial sum is bounded
above.

(ii) The sequence of partial sum of a series
with negative terms can be shown to be
monotonic decreasing and hence a
series with negative terms converges
iff the sequence of its partial sum is
bounded below.

(iii) It may similarly be seen that a series of

negative terms can either converge or
diverge to —oo .

0
(iv) A series Zun whose terms are not
n=1

necessarily positive may fail to be

convergent even if the sequence (Sn)is
bounded above.

For example: Consider u, =(-1)" sothat

-1, ifn isodd

we have S, = )
0, ifn iseven

Test for Convergence of Positive Terms
Series

First Comparison Test: If Z u, and Zvn are
positive terms series, k > 0and 3 meN such
that u, <kv,,Vn>m:

(i) Zvn converges = Zun converges.

(ii) Z u, diverges = Zvn diverges.
Second Comparison Test: If Zun and

Zvn are two positive term series such that

u’l Un
> o Yn>m then,

u

n+1 n+l

()" D v, converges = Y u, converges.

(i) D u, diverges = v, diverges.

1
p-Series Test: The series Z "y is convergent
iff p>1.
Limit form Comparison Test: Let Y u, and

Zvn be two positive term series such that

.U,
Pﬁ&v—=l, ( 1 is finite and non-zero). Then

Z u, and Zvn converge or diverge together.

Remark: If | - Q or [ = o, then the conclusion
of the above test may not hold good.

If Zan is a convergent series of positive

a N
terms then Z . is convergent.
n

l+a
Cauchy's nth Root Test : Let Y a, be a

i /n _
positive term series such that }ll_{g(an) =L.
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Then
i) Y a,converges if 1<1

(i) .a,divergesif 1>1

(iii) Test fails if 1=1

Cauchy's Integral Test: If u(x)is a non-
negative, monotonically decreasing and

_integrable function such that u(n)=u,

vneN, then the series Zun is convergent

n=1

if and only if Iu(x) dx is convergent.
1

= 1
For example : The series Z—p‘ (p>0) is
n=1 1

convergent if p>1land divergentif p<1.

1

2n(logn)” s

For example: The series Z
convergent if p>1land divergentif O<p<1.

Alternating Series: A series of the form
u, -u, +u; +... where u, >0,VvneN is
called an alternating series and is denoted

by i(—l)”"1 u
n=1

For example: Z (— -

n=1

Leibnitz's Test for Alternating Series:

% 0 n_l
If an alternating series Z("l) u, satisfies
n=1

(1) u,,, <u,,vn

(i) limu, = 0

n—w

Then, the series Z(—l)"_l u, converges.

' Remark: The alternating Sel'ies-Z(—l)"“ u,
will not be convergent if either w,,, £u,,Vn

or hmu # O

n—®

Absolute Convergence: If > a, is a series of

real numbers such that Zlan|is &

convergent series. Then Za is N
n 18 ¢
absolutely convergent series, Aleg a;:

For example:

(i Z( 2

n=1

is absolute convergeny ser

(i) Result: Let Y u, be absaly,
lv'.

convergent series. Then Z“ is g,
%

convergent. The converse of thjs j

true i.e., a convergent series May n‘

be absolutely convergent.

Example: Consider the series

Zu —1—l+l—l+
2 3 4

(iii)

Conditional Convergence: A series )y ;
said to be conditionally convergent, if

() D u,is convergent, and

(i) D, u,is not absolutely convergent.

For example: Test for convergence au
absolute convergence the series

1)n+1 1 1

(G 1
nzl 2—p+3—p—2_7+--- for p>0.

FUNCTION & THEIR PROPERTIE!
Function: Let A,B c R be two subsets of §

A function from A to B denoted by f:A -}

is a rule which assign every element of A&
unique element of B. Ais defined as a domai

of f & Bis defined as co-domain of f a&
f(A) is defined as range of f, where

f(A)={f(x)eB:xeA}.
Equality of two functions: Two functions f
and f, are said to be equal if and only if

(i) f, and f, have same domain D (say)

(i) fi(x)=ra(x),vxeD

Composition of functions: Let f: X ->Y o
g:Y >Z be two functions such thy
f(x)=y and g(y)=z, where xeX> y‘;
and zeZ.Then‘the function h: X - a

that h(x)=z=g(y)-g(f(NV**

4_—4
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known as the composition of f and g and is
denoted by gof .

Inverse function: Let f: X — Y be a one-one
onto function. Then the function g:Y » X
which associates to each element yeY the
unique element x e X such that f(x)=y is
known as inverse function of f . The inverse
function g of fis denoted by f~!. Then, we
have f':Y — X such that f™(y)=x, where
flx)=y.

Domain of Definition: Let y = f(x) be arule,

ScR on which f becomes real valued

functioni.e., if Sbeasubsetof R & f:S - R

be real valued function then Sis called domain
of definition. We sometimes denote domain

of definition as ‘Dod ’.
For example:

f(x)=sinx, x#1, Dod=R ~ {1}

Some well known functions

The Greatest Integer Function: Let
f:R—>R defined by f(x)=[x]=n,

Vn<x<n+LneN, [x] indicates the

integral part of x which is nearest and
smallest integer to x. It is also known as floor

of x. Domain of fis the set of real number

and range of f is the set of integers.

4 —_— ,

3
24 —e
1

X

| | 1 »
»

R S T 1 2 3

¢-1

—e 1.2

—e 4.3
Y'w

For example: '[2.45] = 2,[——2. 1] =-3
Fractional Part of Function: The function
f:R—[0,1] defined by f(x)={x}=x-[x],

[x] is greatest integer function is called

fractional part of x

Domain=R [

SN

-3 -2 -1 @ 1 2

For example: x=1.3 then {x}=0.3
Least Integer Function: A function f:R > R

defined as f(x)=[x]= the integral part of x
which is nearest and greatest integer to x. It
is also known as ceiling of x.

For example: [2.3023]=3,[-8.0725|=-8
Logarithmic Function: Let ‘a’ be a positive
real number, then the function f:R" >R

defined as f(x)=log, x is called the

logarithmic function. The range is the set R
of all real numbers. .

Hfa>1
y-axis

fo<a<t
y-axis

\(1 0) x-axis

i
O\-’

9 /(1.0)

Properties: Let g,b,c be positive real
numbers

(i) log,(ab)=log,a+log, b

(ii) log. (%) =log, a-log, b

(iii) log,a™ =mlog.,a, meR

(iv) log,a=l,a=1

: 1
(v) log,,ma=;10g,,a; b#1 & meR

Vi Jog gt —ca bl
g, @ log b’a’

a

1
(vii) logbazlzz"“;;a,b;tl & m>0

m




(viii) @*=" =m;m>0 & a1

Signum Function: Let f:R->{-10,1}

1, if x>0
defined as f(x)=1-1 if x<0
0, if x=0

is called signum function.

y-axis

1

1p—-—

> X-axis
()

M—"

Classification of Functions

Algebraic Function: A function y = f (x) is

said to be an algebraic function and set ScR, -

if it is a root of the equation of the form

Po(x)y" +p, (x)y™! +..+p,(x)=0

where p, (x) are polynomial in x < S,0<i<n
For example: Constant functions are algebraic
function even if f(x)=17.

Transcendental Function: If a function

Y=f(x) defined on a set ScR is not an

algebraic function then it is said to be a
transcendental function on S.

For examples: f(x)=x"

Periodic Function: A function y = f (x) is said
to be periodic if 3 IeR/{0} such that
flx+D)=f(x) ;
x+leD.o.d. and such 1 is called a period of
f.

Fundamental Period: The smallest positive
period | cR* for a periodic function f is

VxeD.o.d and

defined as the fundamental period of F s
For example: f(x)=sinx is a. periodic
function with set of periods {2n7:n eZ)

fundamental period of f(x)=sinx is o, .

" such that g is periodic. Then fo

Sum or difference of two
not be periodic.

Sum of two periodic functiong (.. .
fundamental periods) may be panmg th,
fundamental period may not eXist odic
Sum or difference of two .
not be periodic.

.lon %

periodic f“nCtion
T,
If f and g are two functiong defineq .
n,
g is rin
onR. Perigy
Monotonic Function:

Let ScRand f:S >R then
(i) f issaidtobe monotonically increag;,

if for x; < x, =>f(x1)3f(xz);VJq,x2es

(If strict inequality hold then [ is call
strictly increasing function)

(ii)  f is said to be monotonically decreasi;,
if for x, < x, = f(20) 2 f(x,); Vx,x e

If strict inequality hold then [ is calle
strictly decreasing function.
Even Function and Odd Function: A functio:

f:S—>R is said to be an even function
f(*x):f(x);VxeS and fis called an od
function if f(=x) =-f(x);vxesS,

Limit of a Function

General Principle For Existence of Limi
(GPEL): Let S c R beasubsetof R and x =1

is a limit point of S (may or may not b
member of S).

Let f:S->R

Wesay | c R is the limit of f < for any ¢ >0
36 >0 such that x,,x, e{x:0<|x-al<d
:>|f(x,)—f(x2)|<a

Second Definition: Let § c R beasubset’

R and x =g be a limit point of (may or mé:
not belongs to S)

Let f:SSR.

ny
We say [eR is the limit of f « for
sequence (a, ), such that (a,) > a

= f(a,)>1(a, eS;vnen)

PRIPRSS A S A e e e e~



Note: If we can find two sequences (a,) and
(b,) in S converging to a but f (a,) and

f(b,) converging to different limit point.

Then we say the function has no limit at
x =a or limit does not exist at x = o .

We can say limit does not exist at x = ¢ if we'

can find a sequence (a,) in S such that
(an) —a and f(a,)does not converge at all.
Theorems on Limits

(i) Uniqueness Theorem: Let S cRand f

is defined on S.

x—a

If im f (x) exist then it is unique.

(i) If E_{{}f(x) =L, then f is bounded on
some deleted neighbourhood of x=a

i.e., if f is unbounded on some
neighbourhood of @ = limit at a does not
exist.

i oa
For example: ll_l;l}) - does not exist.

(iii) lm f(x) and equal to a real number

xX—a

[ < both left hand limit im f(x) and

right limit lim f (%) exist and are equal
to].
Sandwich Theorem for Functions: If function
f,gand h are defined on a deleted
neighbourhood D of a point a such that

f(x)zg(x)zh(x);VxeD

and lim f (x) =limh(x) =1,

then Liﬂg(x) exists and equals to | .

Let f be strictly increasing on j - R then
f! exist and is strictly increasing on f(I).
If f is monotonic on (a,b), then for each ¢
in (a,b) lim f(x) and Lim f(x) both exist
may not be equal.

If fis monotonic increasing on (a,b), then

for each c e(a,b)

\~“ﬂ

lim £ (x) = sup f(x) < f(e) < inf f(x)=lim f(x)

° Some Important Limits:
x 1 -Xx
(i) lim(1+lJ =1im(1——] =e
X% X X—w X
(i) lim(l+x)" =e
x 1 yx
(iii) lim(l + 2) = lim(l + —) =e¥
X x X—»0 X
. log(l+ x
(iV) th =1
x-0 X
W) limZ _lzloga,Va>O
x—0 x
5 . xp - ap p-1 .
(vij lm———=pa®",Vp=#0andqg=0if
Xx—a x — a v
p=0
. . sinx
(vii) lim ~ 1
(viii) ling cosx=1
S. CONTINUITY AND UNIFORM
CONTINUITY OF FUNCTIONS
[ Definitions: Let S R be a subset of R and
f S > R be areal valued function. Then we
say f is continuous at g ¢S if any of the
following condition is satisfied:
(1) aeS-S
(i-e. « is an isolated point of S).
(ii) aes and limf(x)=f(a) (i.e. limit of
f exist at x = @ and equal to the value
of the function).
°® Second Definition of Continuity: Let Sc R
and f:S — R be a function then we say f is
continuous at the point 4 S « for every
sequence (x,) in S such that
(x,) > a= f(x,) - f(a)
Types of Discontinuity :
® Removable discontinuity (simple

discontinuity): Let ScR and f:S—>R be
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