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RING:

As the preceding examples indicate, a ring is basically a set in which we have a way of adding, sub-
tracting, multiplying, but not necessarily dividing® Of course, depending on the ring, the addition and
multiplication may not seem like the ordinary operations we are used to. So here's the formal definition:

Definition 1.2.1. A ring is a set R endowed with two binary operations, usually denoted + and -, such
that

e R1: R is an abelian group with respect to +

e R2: Forany a,b,cin R, a-(b-¢) = (a-b)- c (associativity of )

e R3: Forany a,b,cin R, a-(b+c)=a-b+ a-c (left-distributivity)

e R3": Forany a,b,cin R, (a+ b)-c=a-c+ b-c (right-distributivity)

Most often we will also impose some additional conditions on our rings, as follows:

o R4: There exists an element, denoted 1, which has the property that a-1=1-3=a for all ain
R (multiplicative identity)

NOTE

From now on, except in certain specific examples, if the term “ring” is used, it will mean a
ring satisfying R1-R5. That is to say, unless stated otherwise, all our rings will be unital rings.

Lemma 1.2.2. Let R be 3 ring, with additive and multiplicative identities 00 and 1, respectively. Then
for all a, b in R,

I 0a=a0=0;

2 (—a)b= a(—b) = —(ab);

3. (—a){—b) = ab;

4. (na)b = a(nb) = n{ab) for any n in E.

In 4, note that n is not to be thought of as an element of R: the notation na just means a+---+ a,
where there are n copies of a in the sum.

Proof. 1. Exercise

2. To show that (—a)b = —(ab) is to show that the element (—a)b is the additive inverse of ab; so
we add them together, and hope to get zero. So (—a)b+ab = ((—a) + a)b = (0)6 = 0 (by 1).
The equality of a[—b) and —(ab) is similar.

3. Exercise

4 (na)b=(a+---+a)b=(ab+---+ ab) = n(ab) = a(b+---+ b) = a(nb)



Some Special elements in a ring:

Definition 1.3.1. Let a be an element of a ing K. We say that a is:

1.

2.
3.
4.

a unit if 3 has a multiplicative inverse, i.e_, if there exists an element bin R such that ab = ba = 1;
in this case, a is also said to be invertible, and b the inverse of a (and vice versa). Note also
that b is a unit as well - units come in pairs. Of course, it's possible that b= a, .2, an element
may be its own inverse. The set of units in K is denoted K™ - the group of units of K;

a zerodivisor if 3 &£ 0 and there is a nonzero element b in R such that ab = ba = 0;
nilpotent if ¥ = 0 for some k € H;

idempotent if a° = a.

Example 1.3.2. 1. In amy ring 0 and 1 are (trivially) idempotent, and O is trivially nilpotent. 1 is

2
3.

always a unit {“unity is a2 unit”)
In Z, the units are &1, there are no zerodivisors, no nilpotent elements, and only 1 is idempotent.

In {J[x]., the units are the nonzero constant polynomials, there are no zerodivisors, and no nontriwvial
idempotent or nilpotent elements.

In M (R). the units are just the invertible matrices, which is just the multiplicative group GL,(R).
There are plenty of zerodivisors: any strictly upper-triangular matrix multiplied by a stnctly lower-
triangular matrix is zero, so thers are already lots of them. In fact, the zero-divisors are precisely the
non-invertible matrices (except for 0, which never counts as a zerodivisor). This doesn’t usually
happen: in general, rings can contain mamy elements that are neither units nor zerodivisors.
Milpotents must hawve 0 as their only eigenvalue. ldempotents must be diagonalizable and have O
or 1 as their only eigenvalue.

In Z/nE, the units are those classes T for which ged{m, n) = 1. The zercdivisors are those for
which gcd(m, n) # 1. This is another ring in which every nonzerc element is either a wunit or a
zerodivisor, but again do not be tempted to believe that this holds for all rimgs!



