Presentation

BASICS OF GROUP THEORY

Dr. Rajib Biswakarma

Silapathar- 787059 Assam, INDIA

22nd February, 2020

Content of Presentation

- **9** Set, Relation, Binary Operation, Algebraic Structure.
- Groups and Subgroups.
- Order of a Group Order of an element.
- Some Important Properties and Examples of Group.
- Related Theorems.

Set, Relation, Binary Operation, Algebraic Structure

Definition

A well defined collection of objects is called a set.

Well defined means no confusion occurres for inclusion and exclusion of an element.

Definition

Let A and B be two non-empty sets. Then any subset of $A \times B$ is called a relation. If |A| = m and |B| = n then $|A \times B| = m \times n$.

Definition

A relation $R \subseteq A \times A$ is called equivalence relation if R is reflexive, symmetric and transitive.

- R is reflexive if $\forall a \in A, (a, a) \in R$.
- **9** R is called symmetric if $(a, b) \in R \Rightarrow (b, a) \in R, \forall a, b \in A$.

③ R is called transitive if $(a,b) \in R$ and $(b,c) \in R \Rightarrow (c,a) \in R$,

Set, Relation, Binary Operation, Algebraic Structure

Let A = Set of all lines in a plane.

Q $\mathbf{R} = \{(\mathbf{I}, \mathbf{m}): \mathbf{I} \mid | \mathbf{m} \forall l, m \in A\}$ is an equivalence relation.

2 $\mathbf{R} = \{(\mathbf{I}, \mathbf{m}): \mathbf{I} \perp m \forall l, m \in A\}$ is not an equivalence relation.

Definition

If A is non-empty set and R be a relation defined on A and $a \in A$ then equivalence class of *a* i.e., $class(a) = [a] = \{x \in A : xRa\}$

Let
$$A = Z$$
, $aRb \Leftrightarrow 2|(a - b)$
 $[0] = \{x \in A : 2|(x - 0)\} = \{0, 2, -2, 4, -4, 6, -6, ...\}$
 $[1] = \{x \in A : 2|(x - 1)\} = \{1, -1, 3, -3, 5, -5, ...\}$
 $[0] \cup [1] = A$

Set, Relation, Binary Operation, Algebraic Structure

Theorem

Let be an equivalence relation on non-empty set A, then for any $a, b \in A$

- $cl(a) \neq \emptyset$.
- **2** Either $cl(a) \cap cl(b) = \emptyset$ or cl(a) = cl(b).

$$\bullet A = \cup_{a \in A} cl(a).$$

Definition

A binary operation on a non-empty set A is a function 'f' from $A \times A$ to A i.e., $f : A \times A \rightarrow A$. $\forall a, b \in A, f(a, b) = a * b = c \in A$

Definition

A non-empty set A with one or more binary operation is Algebraic structure. eg. $(N, +), (Z, +), (R, +, \times)$.

Groups and Subgroups

Definition

A system (G, *), where *G* is a non-void set and * is a binary composition in *G*, is called a Group if it satisfies the following postulates:

- **O** Associative Law: $a * (b * c) = (a * b) * c \forall a, b, c \in G$.
- Set Existence of Identity: There exist an element *e* ∈ *G* called an identity, such that *a* ∗ *e* = *e* ∗ *a* = *a* ∀ *a* ∈ *G*.
- Set Existence of Inverse: For each *a* ∈ *G* there exist an element *a*⁻¹ ∈ *G*, called an inverse, such that *a* ∗ *a*⁻¹ = *a*⁻¹ ∗ *a* = *e*.

If in addition to the above three postulates, the following postulate is also satisfied, the group is called a commutative or an *abelian group*.

• Commutative Law: $a * b = b * a \forall a, b \in G$.

Groups and Subgroups

Example

 $G = Q \setminus -1$ is a group under the composition defined by a * b = a + b + ab, $\forall a, b \in G$.

Definition

If *H* is a non-empty subset of a group *G*, then *H* is a subgroup of *G* if *H* is a group under the same operation as *G*.

Example

H = (5Z, +) is a subgroup of a group G = (Z, +).

Theorem

One step test for subgroup: A non-empty subset *H* of a group *G* is a subgroup of *G* iff $\forall a, b \in H \Rightarrow ab^{-1} \in H$.

Order of a Group Order of an element

Definition

The number of elements in a group is called the order of the group. The order of a group *G* is denoted by |G| or o(G).

Definition

Let *G* be a group and let $a \in G$. Then *a* is said to be of finite order *n* if *n* is the least positive integer such that $a^n = e$, *e* is the identity of *G*. If $a^n \neq e$ for every $n \in N \Rightarrow O(a) = \infty$

Definition

A group *G* is said to be cyclic if \exists an element $a \in G$ such that for every element of *G* is generated by *a*. and $G = \langle a \rangle = \{a^n : n \in Z\}$. eg., $(Z_n, +_n)$ finite cyclic group, (Z, +) infinite cyclic group.

Some Important Properties and Examples of Group

In a group G.

- Identity element is unique.
- **(a)** Inverse of each $a \in G$ is unique.

●
$$(a^{-1})^{-1} = a, \forall a \in G.$$

(ab)⁻¹ =
$$b^{-1}a^{-1}$$
, $\forall a, b \in G$.

● ab = ac \Rightarrow *b* = *c*, \forall *a*, *b* \in *G* (Left Cancellation Law).

(a) ba = ca \Rightarrow $b = c, \forall a, b \in G$ (Right Cancellation Law).

Examples

Example

 $K_4 = \{e, a, b, c\}$ is an abelian group under the composition defined by $a^2 = e, b^2 = e, c^2 = e$ and ab = ba = c, ac = ca = b, bc = cb = a such that $o(K_4) = 4$. (K_4 is the smallest non-cyclic group).

Example

 $\begin{aligned} D_n &= \{ < x, y >: x^2 = e, y^n = e, yx = xy^{-1} \} \text{ is known as dihedral group} \\ (|D_n| \text{ is a non-abelian group for } n \geq 3). \\ \text{Group of Symmetries of a square is} \\ D_4 &= \{ R_0, R_{90}, R_{180}, R_{270}, H, V, D, D' \} \end{aligned}$

Example

Let $Q_8 = \{1, -1, i, -i, j, -j, k, -k\}$ is non-abelian, non-cyclic group under the composition defined by $i^2 = j^2 = k^2 = -1$ and ij = k, jk = i, ki = j, ji = -k, kj = -i, ik = -j such that $o(Q_8) = 8$. (Every proper subgroup of Q_8 is cyclic, abelian).

(ヨ) (ヨ) ヨ のへの

Related Theorems

Definition

Let *H* be a subgroup of *G*. For $a, b \in G$ we say *a* is congurent to *b* mod *H* if $ab^{-1} \in H$ i.e., $a \equiv b \pmod{H}$ iff $ab^{-1} \in H$.

Theorem

 $Ha = \{x \in G : x \equiv a(modH)\} = cl(a)$

Theorem

Lagrange's Theorem:

If G is a finite group and H is a subgroup of G then o(H)|o(G).

Theorem

Converse of Lagrange's theorem for finite abelian group: A finite abelian group G has a subgroup of order n for every divisor m of n.

Related Theorems

Definition

Let (G, *) and (G', o) be any two group. A mapping $f : G \to G'$ is called Homomorphism if $f(a * b) = f(a)of(b) \forall a, b \in G$. And if f is one-one and onto then f is called Isomorphism. $(G \cong G')$

Theorem

Any finite cyclic group *G* of order *n* is Isomorphic to Z_n i.e., $|G| = n \Rightarrow G \cong Z_n$

Theorem

Any infinite cyclic group G of order n is Isomorphic to (Z, +).

Table of Contents

Surjit Singh, Qazi Zameeruddin, Modern Algebra, Vikas Publishing House Pvt Ltd.

https://en.wikipedia.org/wiki/AbstractAlgebra (Accessed from Internet)

