Dr. Rajib Biswakarma Silapathar, Assam787059, India

Target Audience: Class 1112

DERIVATIVES OF FUNCTION

Dr. Rajib Biswakarma
Silapathar, Assam-787059, India

Target Audience: Class 1112

Content of the Course

Dr. Rajib
Biswakarma Silapathar, Assam787059, India

1 Definition of Differentiation, Differentiation at a Particular Point.

2 Standard Derivatives and Examples.
3 Differentiation of a Function of Function (Chain Rule) and Example.

Definition of Differentiation, Differentiation at a Particular Point

Dr. Rajib Biswakarma Silapathar,
Assam787059, India

Target Audience: Class 1112

Definition

Let X and Y be two non-empty sub-sets of the set of real numbers \mathbb{R}. Then a real valued function $f: X \rightarrow Y$ such that $y=f(x), x \in X, y \in Y$ is called differentiable at x if $\frac{d y}{d x}$ or

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

provided the limit exists.
Usually Δx is replaced by h so that

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

or

$$
f^{\prime}(x)=\lim _{h \rightarrow 0-} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0+} \frac{f(x+h)-f(x)}{h}
$$

Definition of Differentiation, Differentiation at a Particular Point

Dr. Rajib Biswakarma Silapathar,
Assam787059,
India
Target Audience: Class 1112

Here we discuss the process of finding the expression of derivative of given real valued function $y=f(x)$. Let Δx (positive or negative) is called the increment in x and Δy (positive or negative or zero) is called the increment in y. So,

$$
\begin{gathered}
(y+\Delta y)-y=f(x+\Delta x)-f(x) \\
\quad \Rightarrow \Delta y=f(x+\Delta x)-f(x) \\
\quad \Rightarrow \frac{\Delta y}{\Delta x}=\frac{f(x+\Delta x)-f(x)}{\Delta x}
\end{gathered}
$$

This represents the ratio of increments in y and x.

Definition of Differentiation, Differentiation at a Particular Point

Dr. Rajib Biswakarma Silapathar,
Assam787059,
India

Target

Therefore the the limiting value of the ratio as $\Delta x \rightarrow 0$ is defined to be the derivative of $y=f(x)$ with respect to x and is denoted by $\frac{d y}{d x}$ or $f^{\prime}(x)$.

$$
\Rightarrow \lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Usually Δx is replaced by h so that

$$
\frac{d y}{d x} \text { or } f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

Differentiation at a Particular Point

Dr. Rajib Biswakarma Silapathar,
Assam787059, India

Target Audience: Class $11 \quad 12$
f the derivative is desired at a particular point $x=a$ within the domain of f, we write

$$
\left[\frac{d y}{d x}\right]_{x=a} \text { or } f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

which can be expressed as

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Standard Derivative and Example

Dr. Rajib Biswakarma Silapathar,
Assam787059,
India
Target
Audience:
Class 1112

Example

Let $y=f(x)=x^{n}$ where $n \in \mathbb{Q}$,
then $f(x+h)=(x+h)^{n}$
Therefore, $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\Rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{z^{n}}$
$\Rightarrow f^{\prime}(x)=\lim _{z \rightarrow x} \frac{z^{n}-x^{n}}{z-x}$, on putting
$x+h=z, h \rightarrow 0 \Rightarrow z \rightarrow x$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{n} \mathrm{x}^{(n-1)}$, since $\left[\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{(n-1)}\right.$
Thus $\frac{d}{d x}\left(x^{n}\right)=n x^{(n-1)}$
In particular

$$
\begin{aligned}
& \frac{d}{d x}(x)=1, \frac{d}{d x}\left(x^{2}\right)=2 x^{(2-1)}=2 x, \frac{d}{d x}\left(x^{3}\right)=3 x^{(3-1)}=3 x^{2}, \\
& \frac{d}{d x}\left(\frac{1}{x}\right)=-\frac{1}{x^{2}}, \frac{d}{d x}\left(\frac{1}{x^{2}}\right)=\frac{-2}{x^{3}}, \frac{d}{d x}(\sqrt{x})=\frac{1}{2 x}
\end{aligned}
$$

Standard Derivative and Example

Dr. Rajib Biswakarma Silapathar,
Assam787059, India

Target Audience: Class 1112

Example

Let $y=f(x)=\sin x$, then $f(x+h)=\sin (x+h)$
Therefore, $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\Rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h}$,
$\Rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{2 \cos \left(\frac{x+h+x}{2}\right) \sin \left(\frac{x+h-x}{2}\right)}{h}$,
$\Rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\cos \left(x+\frac{h}{2}\right) \sin \left(\frac{h}{2}\right)}{\frac{h}{2}}$
$\Rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0} \cos \left(x+\frac{h}{2}\right) \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}$ on putting
$\frac{h}{2}=\theta, h \rightarrow 0 \Rightarrow \theta \rightarrow 0$.
Thus $\frac{d}{d x}(\sin x)=\cos x$, since we know $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$

Differentiation of a Function of Function (Chain Rule)

■ If $y=f(u), u=g(x)$ then $y=f[g(x)]$, and so y is called a function of a function.
■ Let f and g be derivable functions of u and x respectively. Then, $\frac{d y}{d u}=f^{\prime}(u)$ and $\frac{d u}{d x}(x)=g^{\prime}(x)$ exist.
■ Let Δx and Δu are the corresponding increment in x and u as determined from $u=g(x)$.

- Again, corresponding to the increment Δu in u, let Δy be the increment in y as determined from $y=f(u)$.

Differentiation of a Function of Function (Chain Rule) and Examples

Dr. Rajib Biswakarma Silapathar,
Assam787059,
India
Target Audience: Class 1112

Now, we can write

$$
\frac{\Delta y}{\Delta x}=\frac{\Delta y}{\Delta u} \cdot \frac{\Delta u}{\Delta x}
$$

Let $\Delta x \rightarrow 0$ so that $\Delta u \rightarrow 0$
Then

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0}\left(\frac{\Delta y}{\Delta u} \cdot \frac{\Delta u}{\Delta x}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta u} \cdot \lim _{\Delta x \rightarrow 0} \frac{\Delta u}{\Delta x}
$$

Hence

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

This rule is also known as Chain rule.

Differentiation of a Function of Function (Chain Rule) and Examples

Dr. Rajib
Biswakarma Silapathar,
Assam787059,
India

Target Audience: Class 1112

The rule may be generalised for a finite number of functions of a function. Thus if $y=f(u), u=g(v), v=h(x)$ be three differentiable function so that y is a function of x then

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d v} \cdot \frac{d v}{d x}
$$

Differentiation of a Function of Function (Chain Rule) and Examples

Dr. Rajib Biswakarma Silapathar,
Assam787059, India

Target Audience: Class 1112

Example

Find the derivative of $\sin ^{3} x$
Solution:
Let

$$
\begin{gathered}
y=\sin ^{3} x \\
\Rightarrow \frac{d y}{d x}=\frac{d}{d x}(\sin x)^{3} \\
\Rightarrow \frac{d y}{d x}=3(\sin x)^{3-1} \frac{d}{d x}(\sin x) \\
\Rightarrow \frac{d y}{d x}=3 \sin ^{2} x \cos x
\end{gathered}
$$

Dr. Rajib Biswakarma Silapathar, Assam787059, India

THANK YOU

