e, σ DEFINITION OF LIMIT AND CONTINUITY OF FUNCTIONS

Dr. Rajib Biswakarma Silapathar, Assam-787059, India

ϵ, δ DEFINITION OF LIMIT AND CONTINUITY OF FUNCTIONS

Dr. Rajib Biswakarma Silapathar, Assam-787059, India

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Content of the Course

 ϵ, δ DEFINITION OF LIMIT AND CONTINUITY OF FUNCTIONS

Dr. Rajib Biswakarma Silapathar, Assam-787059, India **1** ϵ -Neighbourhood of a point, limit point of a set.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 2 Why we study Limit?
- 3 Limit of Functions.
- 4 Continuous Function.

$\epsilon\textsc{-Neighbourhood}$ of a point, limit point of a set

 ϵ, δ DEFINITION OF LIMIT AND CONTINUITY OF FUNCTIONS

> Dr. Rajib Biswakarma Silapathar, Assam-787059, India

Definition

Let $a \in \mathbb{R}$ and $\epsilon > 0$. Then ϵ -Neighbourhood of a is the set $V_{\epsilon} = \{x \in \mathbb{R} : |x - a| < \epsilon\}.$

For $a \in \mathbb{R}$, the statement that $x \in V_{\epsilon}$ is equivalent to either of the statements

$$-\epsilon < x - a < \epsilon \Leftrightarrow a - \epsilon < x < a + \epsilon.$$

$\epsilon\text{-Neighbourhood}$ of a point, limit point of a set

 ϵ, δ DEFINITION OF LIMIT AND CONTINUITY OF FUNCTIONS

Dr. Rajib Biswakarma Silapathar, Assam-787059, India

Definition

Let $A \subseteq \mathbb{R}$. A point $c \in \mathbb{R}$ is a **limit point** of A if every $\delta > 0$ there exists at least one point $x \in A$, $x \neq c$ such that in $|x - c| < \delta$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Why we study Limit?

 ϵ, δ DEFINITION OF LIMIT AND CONTINUITY OF FUNCTIONS

Dr. Rajib Biswakarma Silapathar, Assam-787059, India

$$f(x) = \frac{x^2 - 3x + 2}{x - 2}$$

Table: Sample Table

x	f(x)	х	f(x)	х	f(x)
0	-1	1.7	1.9	2.3	1.3
1	0	1.9	0.9	2.1	1.1
-1	-2	1.99	0.99	2.01	1.01
2	??	1.999	0.999	2.001	1.001

Limit of Functions (ϵ , δ DEFINITION)

 ϵ, δ DEFINITION OF LIMIT AND CONTINUITY OF FUNCTIONS

Dr. Rajib Biswakarma Silapathar, Assam-787059, India

Definition

Let $A \subseteq \mathbb{R}$ and let c be a limit point of A. For a function $f : A \to \mathbb{R}$, a real number L is said to be a **limit of** f at c if, given any $\epsilon > 0$, there exists a $\delta > 0$ such that if $x \in A$ and $0 < |x - c| < \delta$, then $|f(x) - L| < \epsilon$.

Example

1
$$f : \mathbb{N} \to \mathbb{R}, f(x) = x + 1.$$

2
$$f: \mathbb{R} \to \mathbb{R}, f(x) = x \sin \frac{1}{x}$$
, prove that $\lim_{x \to 0} f(x) = 0$.

Limit of Functions (ϵ , δ DEFINITION)

 ϵ, δ DEFINITION OF LIMIT AND CONTINUITY OF FUNCTIONS

Dr. Rajib Biswakarma Silapathar, Assam-787059, India

Example

Solution:

Given $|f(x) - 0| = |x \sin \frac{1}{x}|$. $= |x|| \sin \frac{1}{x}| \le |x - 0|$ Thus choosing a $\delta = \epsilon$, we see that $|x \sin \frac{1}{x}| < \epsilon$, when $0 < |x| < \delta$ Therefore, $\lim_{x \to 0} f(x) = 0$

Continuity of Functions (ϵ , δ DEFINITION)

 ϵ, δ DEFINITION OF LIMIT AND CONTINUITY OF FUNCTIONS

> Dr. Rajib Biswakarma Silapathar, Assam-787059, India

Definition

Let $A \subseteq \mathbb{R}$, let function $f : A \to \mathbb{R}$, and let $c \in A$. We say that f is **continuous** at c if, given any $\epsilon > 0$, there exists a $\delta > 0$ such that if $x \in A$ satisfying $|x - c| < \delta$, then $|f(x) - f(c)| < \epsilon$.

- If f fails to be continuous at c, then we say that f is discontinuous at c.
- If $c \in A$ is a limit point of A, then by a comparison of Definitions of limit and continuity we can say that f is continuous at c if and only if $f(c) = \lim_{x \to c} f(x)$.

Continuity of Functions (ϵ , δ DEFINITION)

 ϵ, δ DEFINITION OF LIMIT AND CONTINUITY OF FUNCTIONS

> Dr. Rajib Biswakarma Silapathar, Assam-787059, India

Example

• $f : \mathbb{N} \to \mathbb{R}$, f(x) = x + 1, is a continuous function. • if $f(x) = \begin{cases} x \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \\ \text{then } f \text{ is continuous at } x = 0. \end{cases}$

e, ∂ DEFINITION OF LIMIT AND CONTINUITY OF FUNCTIONS

Dr. Rajib Biswakarma Silapathar, Assam-787059, India

THANK YOU

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @