ϵ, δ DEFINITION OF LIMIT AND CONTINUITY OF FUNCTIONS

Dr. Rajib Biswakarma

Silapathar, Assam-787059, India

Content of the Course

ϵ, δ

0 Why we study Limit?
3 Limit of Functions.
4 Continuous Function.

ϵ-Neighbourhood of a point, limit point of a set

ϵ, δ

Dr. Rajib
Biswakarma
Silapathar,
Assam787059, India

Definition

Let $a \in \mathbb{R}$ and $\epsilon>0$. Then ϵ-Neighbourhood of a is the set $V_{\epsilon}=\{x \in \mathbb{R}:|x-a|<\epsilon\}$.

For $a \in \mathbb{R}$, the statement that $x \in V_{\epsilon}$ is equivalent to either of the statements

$$
-\epsilon<x-a<\epsilon \Leftrightarrow a-\epsilon<x<a+\epsilon
$$

ϵ, δ DEFINITION OF LIMIT AND

Definition

Let $A \subseteq \mathbb{R}$. A point $c \in \mathbb{R}$ is a limit point of A if every $\delta>0$ there exists at least one point $x \in A, x \neq c$ such that in $|x-c|<\delta$.

Why we study Limit?

Limit of Functions (ϵ, δ DEFINITION)

ϵ, δ

Dr. Rajib
Biswakarma
Silapathar,
Assam787059, India

Definition

Let $A \subseteq \mathbb{R}$ and let c be a limit point of A. For a function $f: A \rightarrow \mathbb{R}$, a real number L is said to be a limit of f at c if, given any $\epsilon>0$, there exists a $\delta>0$ such that if $x \in A$ and $0<|x-c|<\delta$, then $|f(x)-L|<\epsilon$.

Example

$1 f: \mathbb{N} \rightarrow \mathbb{R}, f(x)=x+1$.
2 $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x \sin \frac{1}{x}$, prove that $\lim _{x \rightarrow 0} f(x)=0$.

Limit of Functions (ϵ, δ DEFINITION)

ϵ, δ DEFINITION OF LIMIT AND CONTINUITY OF
FUNCTIONS
Dr. Rajib
Biswakarma
Silapathar,
Assam787059, India

Example

Solution:

Given $|f(x)-0|=\left|x \sin \frac{1}{x}\right|$.
$=|x|\left|\sin \frac{1}{x}\right| \leq|x-o|$
Thus choosing a $\delta=\epsilon$, we see that $\left|x \sin \frac{1}{x}\right|<\epsilon$, when $0<|x|<\delta$ Therefore, $\lim _{x \rightarrow 0} f(x)=0$

Continuity of Functions (ϵ, δ DEFINITION)

Definition

Let $A \subseteq \mathbb{R}$, let function $f: A \rightarrow \mathbb{R}$, and let $c \in A$. We say that f is continuous at c if, given any $\epsilon>0$, there exists a $\delta>0$ such that if $x \in A$ satisfying $|x-c|<\delta$, then $|f(x)-f(c)|<\epsilon$.

- If f fails to be continuous at c, then we say that f is discontinuous at c.

■ If $c \in A$ is a limit point of A, then by a comparison of Definitions of limit and continuity we can say that f is continuous at c if and only if $f(c)=\lim _{x \rightarrow c} f(x)$.

Continuity of Functions (ϵ, δ DEFINITION)

ϵ, δ DEFINITION OF LIMIT AND

Example

■ $f: \mathbb{N} \rightarrow \mathbb{R}, f(x)=x+1$, is a continuous function.

- if $f(x)=\left\{\begin{array}{c}x \sin \frac{1}{x}, \text { if } x \neq 0 \\ 0, \text { if } x=0\end{array}\right.$
then f is continuous at $x=0$.
ϵ, δ DEFINITION OF LIMIT AND CONTINUITY OF FUNCTIONS

Dr. Rajib
Biswakarma
Silapathar,
Assam-
787059, India
THANK YOU

