Limit inferior and Limit Superior of SEQUENCES

Dr. Rajib Biswakarma

Silapathar, Assam-787059, India

Content of Presentation

Limit inferior and Limit Superior of SEQUENCES

Dr. Rajib
Biswakarma
Silapathar,
Assam-
787059, India

1 Some Theorems.
2 Limit inferior and Limit Superior.

Limit points of a Sequence.

Limit inferior
and Limit
Superior of SEQUENCES

Dr. Rajib
Biswakarma
Silapathar,
Assam-
787059, India

Definition

A real number a is said to be a limit point of a sequence $<a_{n}>$. If for any $\epsilon>0$, there exists $a_{k} \in(a-\epsilon, a+\epsilon)$, for an infinite numbers of values of k, i.e., $\left|a_{n}-a\right|<\epsilon$, for an infinite numbers of values of n.

Example

$1<a_{n}>=<n^{2}>, n \in \mathbb{N}$, has no limit point.
$2<a_{n}>=<2>, n \in \mathbb{N}$, has the only limit point 2 .
$3<a_{n}>=<(-1)^{n}>, n \in \mathbb{N}$, has two limit points 1 and -1 .
$4<a_{n}>=<\frac{1}{n}>, n \in \mathbb{N}$, has 0 as a unique limit point.

Some Theorems

Limit inferior
and Limit
Superior of SEQUENCES

Dr. Rajib
Biswakarma
Silapathar,
Assam-
787059, India

Definition

A sequence $<a_{n}>$ is said to be bounded if there exists a real number $M>0$ such that $\left|a_{n}\right| \leq M \forall \mathrm{n} \in \mathbb{N}$.

Theorem

A convergent sequence of real numbers is bounded.

Theorem

A sequence cannot converge to more than one limit.

Some Theorems

Limit inferior
and Limit Superior of SEQUENCES

Dr. Rajib
Biswakarma
Silapathar,
Assam-
787059, India

Theorem

Bolzano-Weierstrass Theorem

Every bounded sequence has a limit point.

Theorem

A necessary and sufficient condition for the convergence of a sequence is that it is bounded and has a unique limit point.

Limit inferior and Limit Superior

Limit inferior
and Limit
Superior of SEQUENCES

Dr. Rajib
Biswakarma
Silapathar,
Assam-
787059, India

Definition

Let $\left\langle a_{n}\right\rangle$ be a bounded sequence of real numbers.
1 The limit superior $\lim _{n \rightarrow \infty}$ sup a_{n} of $<a_{n}>$ is

$$
\lim _{n \rightarrow \infty} \sup a_{n}=\inf _{n} \sup \left\{a_{n}, a_{n+1}, a_{n+2}, \ldots\right\}
$$

2 The limit inferior $\lim _{n \rightarrow \infty} \inf a_{n}$ of $<a_{n}>$ is

$$
\lim _{n \rightarrow \infty} \inf a_{n}=\sup _{n} \inf \left\{a_{n}, a_{n+1}, a_{n+2}, \ldots\right\}
$$

Limit inferior and Limit Superior

Limit inferior
and Limit Superior of SEQUENCES

Dr. Rajib
Biswakarma
Silapathar,
Assam-
787059, India

Theorem

If $<a_{n}>$ is a bounded sequence, then
$1 \lim \inf a_{n}=$ smallest limit point of $\left.<a_{n}\right\rangle$, and
$2 \limsup a_{n}=$ greatest limit point of $\left.<a_{n}\right\rangle$.

Theorem

A bounded sequence $<a_{n}>$ is converges to a real number a if and only if

$$
\liminf a_{n}=\limsup a_{n}=a
$$

Limit inferior and Limit Superior

Limit inferior
and Limit
Superior of SEQUENCES

Dr. Rajib
Biswakarma
Silapathar,
Assam-
787059, India

Example

Consider the sequence $a_{n}=\left(1+(-1)^{n} \frac{1}{n}\right)^{n}$ then
$1 \liminf a_{n}=$?
$2 \limsup a_{n}=$?
Ans:-

$$
a_{n}=\left\{\begin{array}{c}
\left(1+\frac{1}{n}\right)^{n}, \text { if } n \text { is even } \\
\left(1-\frac{1}{n}\right)^{n}, \text { if } n \text { is odd }
\end{array}\right.
$$

Therefore the set of limit points of $<a_{n}>=\left\{e, \frac{1}{e}\right\}$. So, $\lim \inf a_{n}=e$ and $\limsup a_{n}=\frac{1}{e}$

Limit inferior and Limit Superior of SEQUENCES

Dr. Rajib
Biswakarma
Silapathar,
Assam-
787059, India

Malik, S. C. and Arora, S., Mathematical Analysis, New Age International Publishers.
https: //en.wikipedia.org/wiki/MathematicalAnalysis (Accessed from Internet)

THANK YOU

