Limit inferior and Limit Superior of SEQUENCES

Dr. Rajib Biswakarma Silapathar, Assam-787059, India

Limit inferior and Limit Superior of SEQUENCES

Dr. Rajib Biswakarma Silapathar, Assam-787059, India

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Content of Presentation

Limit inferior and Limit Superior of SEQUENCES

Dr. Rajib Biswakarma Silapathar, Assam-787059, India

Some Theorems.

2 Limit inferior and Limit Superior.

Limit points of a Sequence.

Limit inferior and Limit Superior of SEQUENCES

Dr. Rajib Biswakarma Silapathar, Assam-787059, India

Definition

A real number *a* is said to be a limit point of a sequence $\langle a_n \rangle$. If for any $\epsilon > 0$, there exists $a_k \in (a - \epsilon, a + \epsilon)$, for an infinite numbers of values of *k*, i.e., $|a_n - a| < \epsilon$, for an infinite numbers of values of *n*.

Example

$$a_n > = < n^2 >$$
, $n \in \mathbb{N}$, has no limit point.

- $2 < a_n > = < 2 >, n \in \mathbb{N}$, has the only limit point 2.
- 3 $< a_n > = < (-1)^n >, n \in \mathbb{N}$, has two limit points 1 and -1.

 $|| < a_n > = < \frac{1}{n} >$, $n \in \mathbb{N}$, has 0 as a unique limit point.

Some Theorems

Limit inferior and Limit Superior of SEQUENCES

Dr. Rajib Biswakarma Silapathar, Assam-787059, India

Definition

A sequence $\langle a_n \rangle$ is said to be bounded if there exists a real number M > 0 such that $|a_n| \leq M \forall n \in \mathbb{N}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem

A convergent sequence of real numbers is bounded.

Theorem

A sequence cannot converge to more than one limit.

Some Theorems

Limit inferior and Limit Superior of SEQUENCES

Dr. Rajib Biswakarma Silapathar, Assam-787059, India

Theorem

Bolzano-Weierstrass Theorem *Every bounded sequence has a limit point.*

Theorem

A necessary and sufficient condition for the convergence of a sequence is that it is bounded and has a unique limit point.

(日) (四) (日) (日) (日)

Limit inferior and Limit Superior

Limit inferior and Limit Superior of SEQUENCES

Dr. Rajib Biswakarma Silapathar, Assam-787059, India

Definition

Let $< a_n >$ be a bounded sequence of real numbers.

1 The limit superior $\lim_{n\to\infty} \sup a_n$ of $< a_n >$ is

$$\lim_{n\to\infty}\sup a_n = \inf_n \sup\{a_n, a_{n+1}, a_{n+2}, \ldots\}$$

2 The limit inferior $\lim_{n\to\infty} \inf a_n$ of $< a_n >$ is

 $\lim_{n\to\infty} \inf a_n = \sup_n \inf \{a_n, a_{n+1}, a_{n+2}, \ldots\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Limit inferior and Limit Superior

Limit inferior and Limit Superior of SEQUENCES

Dr. Rajib Biswakarma Silapathar, Assam-787059, India

Theorem

If $< a_n >$ is a bounded sequence, then

1 lim inf $a_n =$ smallest limit point of $< a_n >$, and

2 lim sup $a_n = greatest$ limit point of $\langle a_n \rangle$.

Theorem

A bounded sequence $\langle a_n \rangle$ is converges to a real number a if and only if

lim inf $a_n = \lim \sup a_n = a$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Limit inferior and Limit Superior

Limit inferior and Limit Superior of SEQUENCES

Dr. Rajib Biswakarma Silapathar, Assam-787059, India

Example

Consider the sequence
$$a_n = (1 + (-1)^n \frac{1}{n})^n$$
 then
1 lim inf $a_n = ?$
2 lim sup $a_n = ?$
Ans:-
 $((1 + \frac{1}{n})^n \text{ if } n \text{ is even})$

$$a_n = \begin{cases} (1 + \frac{1}{n})^n, \text{ if } n \text{ is even} \\ (1 - \frac{1}{n})^n, \text{ if } n \text{ is odd} \end{cases}$$

Therefore the set of limit points of $\langle a_n \rangle = \{e, \frac{1}{e}\}$. So, lim inf $a_n = e$ and lim sup $a_n = \frac{1}{e}$

Limit inferior and Limit Superior of SEQUENCES

Dr. Rajib Biswakarma Silapathar, Assam-787059, India

Malik, S. C. and Arora, S., Mathematical Analysis, New Age International Publishers.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

https://en.wikipedia.org/wiki/MathematicalAnalysis
(Accessed from Internet)

Limit inferior and Limit Superior of SEQUENCES

Dr. Rajib Biswakarma Silapathar, Assam-787059, India

THANK YOU

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ