Class Notes 4th sem C9(unit 1)

Dr. Rajib Biswakarma Assistant Professor, Department of Mathematics Silapathar College

References

Class Notes 4th sem C9(unit 1)

Dr. Rajib Biswakarma Assistant Professor, Department of Mathematics Silapathar College

Content

Class Notes 4th sem C9(unit 1)

Dr. Rajib Biswakarma Assistant Professor, Department of Mathematics Silapathar College

References

- **1** Partitions of a closed interval.
- 2 Riemann sum.
- **3** Darboux's condition of integrability.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 4 Examples.
- 5 Theorems.

Partitions of a closed interval

Class Notes 4th sem C9(unit 1)

Dr. Rajib Biswakarma Assistant Professor, Department of Mathematics Silapathar College

References

Definition

Suppose I = [a, b] is a closed and bounded interval then by a partition of I means a finite set of real numbers $P = \{x_0, x_1, x_2, \dots, x_n\}$ having the property that $a = x_0 \le x_1 \le x_2 \le \dots \le x_n = b.$

1
$$I_1 = [x_0, x_1], I_2 = [x_1, x_2], \dots I_i = [x_{i-1}, x_i], \dots, I_n = [x_{n-1}, x_n]$$
 are the sub-intervals of $[a, b]$.

- 2 We shall use the symbol $\Delta x_i = x_{i-1} x_i$ to denote the ith sub-interval.
- 3 For any partition P the length of the largest sub-interval is called norm or mesh of the partition and is denoted as µ(P).

Riemann sum

Class Notes 4th sem C9(unit 1)

Dr. Rajib Biswakarma Assistant Professor, Department of Mathematics Silapathar College

References

Definition

Suppose f(x) is a bounded function defined in a closed interval [a, b] and suppose $P = \{x_0, x_1, x_2, \cdots, x_n\}$ is a partition of [a, b]. Let $M_i = Sup\{f(x) : x_{i-1} \le x \le x_i\}$, $m_i = Inf\{f(x) : x_{i-1} \le x \le x_i\}$. Therefore $L(P, f) = \sum_{i=1}^n m_i \Delta x_i$, is called the Lower R-sum of f on [a, b] w.r.t partition P. $U(P, f) = \sum_{i=1}^n M_i \Delta x_i$ is called the Upper R-sum of f on [a, b] w.r.t partition P.

Lemma

Suppose f(x) is a bounded function defined in a closed interval [a, b] and suppose $P = \{x_0, x_1, x_2, \dots, x_n\}$ is a partition of [a, b]. Then

$$M(b-a) \geq U(P,f) \geq L(P,f) \geq m(b-a)$$

Darboux's condition of integrability

Definition

When the two integrals $\int_{a_{-}}^{b} f dx$ and $\int_{a}^{b} f dx$ are equal, i.e.,

$$\int_{a_{-}}^{b} f dx = \int_{a}^{b} f dx = \int_{a}^{b} f dx.$$

where $\int_{a_{-}}^{b} fdx = inf \{ U(P, f) : P \text{ is any partition of } [a, b] \}$ and $\int_{a}^{b} fdx = Sup\{L(P, f) : P \text{ is any partition of } [a, b] \}$. Then we say that f is R-integrable or simply integrable over [a, b] and the common value of this integral is called the Riemann integral or Darboux's integral.

Class Notes 4th sem C9(unit 1)

Dr. Rajib Biswakarma Assistant Professor, Department of Mathematics Silapathar College

References

Examples

Class Notes 4th sem C9(unit 1)

Dr. Rajib Biswakarma Assistant Professor, Department of Mathematics Silapathar College

References

Example

If f(x) be defined on [0,1] as

$$f(x) = \begin{cases} 1, \text{if } x \text{ is rational} \\ -1, \text{if } x \text{ is irrational} \end{cases}$$
(1)

Now, we have to show that f(x) is an example of bounded function which is not R-integrable over [0, 1]. Let $P = \{x_0 = 0, x_1, x_2, \dots, x_n = 1\}$ be any partition of [0, 1]. Let for any sub-interval $[x_{i-1}, x_i]$ the Sup Inf value of are $M_i = 1$ and $m_i = -1$. Therefore $U(P, f) = \sum_{i=1}^n M_i \Delta x_i = 1(1-0) = 1$. $L(P, f) = \sum_{i=1}^n m_i \Delta x_i = -1(1-0) = -1$. This implies $f^1 \qquad f^{\Gamma}$

$$\int_{0_{-}}^{1} f dx \neq \int_{0}^{\Gamma} f dx$$

Examples

Class Notes 4th sem C9(unit 1)

Dr. Rajib Biswakarma Assistant Professor, Department of Mathematics Silapathar College

References

Example

Show that $f(x) = x^2$ is integrable over [0, k]. Let $P = \{0, \frac{k}{n}, \frac{2k}{n}, \cdots, \frac{nk}{n} = k\}$ be any partition of [0, 1]. Let for any sub-interval $[(i-1)\frac{k}{n}, i\frac{k}{n}]$ the Sup Inf value of are $M_i = [(i-1)\frac{k}{n}]^2$ and $m_i = [\frac{ik}{n}]^2$. Therefore $U(P, x^2) = \sum_{i=1}^n M_i \Delta x_i = \frac{k^3}{n^3} \frac{n}{6} (n+1)(2n+1)$. $L(P, x^2) = \sum_{i=1}^n m_i \Delta x_i = \frac{k^3}{n^3} \frac{n}{6} (n-1)(2n-1)$. This implies

$$\int_{0-}^{k} x^2 dx = \lim_{n \to \infty} \frac{k^3}{n^3} \frac{n}{6} (n+1)(2n+1) = \frac{k^3}{6}$$

$$\int_0^k f dx = \lim_{n \to \infty} \frac{k^3}{n^3} \frac{n}{6} (n-1)(2n-1) = \frac{k^3}{6}$$

Hence the function x^2 is R-integrable over [0, k].

Class Notes 4th sem C9(unit 1)

Dr. Rajib Biswakarma Assistant Professor, Department of Mathematics Silapathar College

References

Definition

A partition P^* is said to be a refinement of P if $P^* \supseteq P$, i.e., every point of P is a point of P^* .

Theorem

If P^* is a refiement of a partition P, then for a bounded function f,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

1 $L(P^*, f) \ge L(P, f)$, and

2 $U(P^*, f) \leq U(P, f)$.

Class Notes 4th sem C9(unit 1)

Dr. Rajib Biswakarma Assistant Professor, Department of Mathematics Silapathar College

References

Proof.

Suppose first that P^* contains just one point more than P, and let that point is in Δx_i , that is, $x_{i-1} < \xi < x_i$. As the function is bounded over [a, b], it is bounded in every sub-interval Δx_i . Let w_1, w_2, m_i be the infimum (g.l.b) of f in the intervals $[x_{i-1},\xi], [\xi, x_i], [x_{i-1}, x_i]$ respectively Clearly $m_i < w_1, m_i < w_2$ Therefore, $L(P^*, f) - L(P, f)$ $= w_1(\xi - x_{i-1}) + w_2(x_i - \xi) - m_i(x_i - x_{i-1})$ $= w_1(\xi - x_{i-1}) + w_2(x_i - \xi) - m_i(x_i - \xi + \xi - x_{i-1})$ $= (w_1 - m_i)(\xi - x_{i-1}) + (w_2 - m_i)(x_i - \xi)$ > 0If P^* contains p points more than P, we repeat the above reasoning p times and arrive at $L(P^*, f) \ge L(P, f)$ Similarly, we can prove that $U(P^*, f) \leq U(P, f)$.

Class Notes 4th sem C9(unit 1)

Dr. Rajib Biswakarma Assistant Professor, Department of Mathematics Silapathar College

References

Theorem

If P^* is a refiement of a partition P contains p points more than P, and function $|f(x)| \le k$ for all $x \in [a, b]$, then **1** $L(P, f) \le L(P^*, f) \le L(P, f) + 2pk\mu$, and

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

2 $U(P, f) \ge U(P^*, f) \ge U(P, f) - 2pk\mu$.

Class Notes 4th sem C9(unit 1)

Dr. Rajib Biswakarma Assistant Professor, Department of Mathematics Silapathar College

References

Proof. Proceeding as in the above theorem, $L(P^*, f) - L(P, f) = (w_1 - m_i)(\xi - x_{i-1}) + (w_2 - m_i)(x_i - \xi)$ Since $|f(x)| \le k$ for all $x \in [a, b]$ therefore $-k < m_i < w_1 < k$ $\Rightarrow 0 < w_1 - m_i < 2k$ Similarly $0 < w_2 - m_i < 2k$ therefore $L(P^*, f) - L(P, f) \le 2k(\xi - x_{i-1}) + 2k(x_i - \xi) = 2k\Delta x_i \le 2k\mu$ Now supposing that each additional point is introduced one by one, by repeating the above reasoning p times we get $L(P, f) < L(P^*, f) < L(P, f) + 2pk\mu$. Similarly the other result may be proved.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Class Notes 4th sem C9(unit 1)

Dr. Rajib Biswakarma Assistant Professor, Department of Mathematics Silapathar College

References

Malik, S. C. and Arora, S., Mathematical Analysis, New Age International Publishers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

https://en.wikipedia.org/wiki/MathematicalAnalysis
(Accessed from Internet)