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Partitions of a closed interval

Definition

Suppose I = [a, b] is a closed and bounded interval then by a
partition of I means a finite set of real numbers
P = {x0, x1, x2, · · · , xn} having the property that
a = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn = b.

1 I1 = [x0, x1], I2 = [x1, x2], · · · Ii = [xi−1, xi ], · · · , In =
[xn−1, xn] are the sub-intervals of [a, b].

2 We shall use the symbol ∆xi = xi−1 − xi to denote the ith
sub-interval.

3 For any partition P the length of the largest sub-interval is
called norm or mesh of the partition and is denoted as
µ(P).
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Riemann sum

Definition

Suppose f (x) is a bounded function defined in a closed interval
[a, b] and suppose P = {x0, x1, x2, · · · , xn} is a partition of
[a, b]. Let Mi = Sup{f (x) : xi−1 ≤ x ≤ xi},
mi = Inf {f (x) : xi−1 ≤ x ≤ xi}.
Therefore L(P, f ) =

∑n
i=1mi∆xi , is called the Lower R-sum of

f on [a, b] w.r.t partition P.
U(P, f ) =

∑n
i=1Mi∆xi is called the Upper R-sum of f on

[a, b] w.r.t partition P.

Lemma

Suppose f (x) is a bounded function defined in a closed interval
[a, b] and suppose P = {x0, x1, x2, · · · , xn} is a partition of
[a, b]. Then

M(b − a) ≥ U(P, f ) ≥ L(P, f ) ≥ m(b − a)

Where M = Sup{f (x) : a ≤ x ≤ b},
m = Inf {f (x) : a ≤ x ≤ b}.
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Darboux’s condition of integrability

Definition

When the two integrals
∫ b
a−

fdx and
∫ b̄
a fdx are equal, i.e.,∫ b

a−

fdx =

∫ b̄

a
fdx =

∫ b

a
fdx ,

where
∫ b
a−

fdx = inf {U(P, f ) : P is any partition of [a, b]}
and

∫ b̄
a fdx = Sup{L(P, f ) : P is any partition of [a, b]}.

Then we say that f is R-integrable or simply integrable over
[a, b] and the common value of this integral is called the
Riemann integral or Darboux’s integral.
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Examples

Example

If f (x) be defined on [0, 1] as

f (x) =

{
1, if x is rational

−1, if x is irrational
(1)

Now, we have to show that f (x) is an example of bounded
function which is not R-integrable over [0, 1].
Let P = {x0 = 0, x1, x2, · · · , xn = 1} be any partition of [0, 1].
Let for any sub-interval [xi−1, xi ] the Sup Inf value of are
Mi = 1 and mi = −1.
Therefore U(P, f ) =

∑n
i=1Mi∆xi = 1(1− 0) = 1.

L(P, f ) =
∑n

i=1mi∆xi = −1(1− 0) = −1.
This implies ∫ 1

0−

fdx ̸=
∫ 1̄

0
fdx
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Examples

Example

Show that f (x) = x2 is integrable over [0, k].
Let P = {0, kn ,

2k
n , · · · , nkn = k} be any partition of [0, 1]. Let

for any sub-interval [(i − 1)kn , i
k
n ] the Sup Inf value of are

Mi = [(i − 1)kn ]
2 and mi = [ ikn ]

2.

Therefore U(P, x2) =
∑n

i=1Mi∆xi =
k3

n3
n
6 (n + 1)(2n + 1).

L(P, x2) =
∑n

i=1mi∆xi =
k3

n3
n
6 (n − 1)(2n − 1).

This implies∫ k

0−

x2dx = lim
n→∞

k3

n3
n

6
(n + 1)(2n + 1) =

k3

6∫ k̄

0
fdx = lim

n→∞

k3

n3
n

6
(n − 1)(2n − 1) =

k3

6

Hence the function x2 is R-integrable over [0, k].
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Related Theorems

Definition

A partition P∗ is said to be a refinement of P if P∗ ⊇ P, i.e.,
every point of P is a point of P∗.

Theorem

If P∗ is a refiement of a partition P, then for a bounded
function f ,

1 L(P∗, f ) ≥ L(P, f ), and

2 U(P∗, f ) ≤ U(P, f ).
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Related Theorems

Proof.

Suppose first that P∗ contains just one point more than P, and
let that point is in ∆xi , that is, xi−1 < ξ < xi . As the function
is bounded over [a, b], it is bounded in every sub-interval ∆xi .
Let w1,w2,mi be the infimum (g.l.b) of f in the intervals
[xi−1, ξ], [ξ, xi ], [xi−1, xi ] respectively Clearly
mi ≤ w1,mi ≤ w2

Therefore, L(P∗, f )− L(P, f )
= w1(ξ − xi−1) + w2(xi − ξ)−mi (xi − xi−1)
= w1(ξ − xi−1) + w2(xi − ξ)−mi (xi − ξ + ξ − xi−1)
= (w1 −mi )(ξ − xi−1) + (w2 −mi )(xi − ξ)
≥ 0
If P∗ contains p points more than P, we repeat the above
reasoning p times and arrive at L(P∗, f ) ≥ L(P, f )
Similarly, we can prove that U(P∗, f ) ≤ U(P, f ).
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Related Theorems

Theorem

If P∗ is a refiement of a partition P contains p points more
than P, and function |f (x)| ≤ k for all x ∈ [a, b], then

1 L(P, f) ≤ L(P∗, f ) ≤ L(P, f ) + 2pkµ, and

2 U(P, f) ≥ U(P∗, f ) ≥ U(P, f )− 2pkµ.
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Related Theorems

Proof.

Proceeding as in the above theorem,
L(P∗, f )− L(P, f ) = (w1 −mi )(ξ − xi−1) + (w2 −mi )(xi − ξ)
Since |f (x)| ≤ k for all x ∈ [a, b] therefore
-k ≤ mi ≤ w1 ≤ k
⇒ 0 ≤ w1 −mi ≤ 2k
Similarly 0 ≤ w2 −mi ≤ 2k
therefore
L(P∗, f )− L(P, f ) ≤ 2k(ξ − xi−1) + 2k(xi − ξ) = 2k∆xi ≤ 2kµ
Now supposing that each additional point is introduced one by
one, by repeating the above reasoning p times we get

L(P, f) ≤ L(P∗, f ) ≤ L(P, f ) + 2pkµ.
Similarly the other result may be proved.
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