Class Notes
4th sem C9(unit 1)

Dr. Rajib

Biswakarma

Assistant
Professor,

Silapathar
College

Class Notes 4th sem C9(unit 1)

Dr. Rajib Biswakarma
Assistant Professor, Department of Mathematics Silapathar College

Content

Class Notes

4th sem C9(unit 1)

Dr. Rajib
Biswakarma
Assistant
Professor,
Department of
Mathematics
Silapathar
College

1 Partitions of a closed interval.

2 Riemann sum.

3 Darboux's condition of integrability.
4 Examples.

5 Theorems.

Partitions of a closed interval

Dr. Rajib
Biswakarma
Assistant
Professor,

Definition

Suppose $I=[a, b]$ is a closed and bounded interval then by a partition of I means a finite set of real numbers
$P=\left\{x_{0}, x_{1}, x_{2}, \cdots, x_{n}\right\}$ having the property that
$a=x_{0} \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}=b$.
$1 I_{1}=\left[x_{0}, x_{1}\right], I_{2}=\left[x_{1}, x_{2}\right], \cdots I_{i}=\left[x_{i-1}, x_{i}\right], \cdots, I_{n}=$ $\left[x_{n-1}, x_{n}\right]$ are the sub-intervals of $[a, b]$.

2 We shall use the symbol $\Delta x_{i}=x_{i-1}-x_{i}$ to denote the ith sub-interval.

3 For any partition P the length of the largest sub-interval is called norm or mesh of the partition and is denoted as $\mu(P)$.

Riemann sum

Class Notes

4th sem C9(unit 1)

Dr. Rajib
Biswakarma
Assistant
Professor,
Department of
Mathematics
Silapathar
College

Definition

Suppose $f(x)$ is a bounded function defined in a closed interval [a,b] and suppose $P=\left\{x_{0}, x_{1}, x_{2}, \cdots, x_{n}\right\}$ is a partition of
$[a, b]$. Let $M_{i}=\operatorname{Sup}\left\{f(x): x_{i-1} \leq x \leq x_{i}\right\}$,
$m_{i}=\operatorname{lnf}\left\{f(x): x_{i-1} \leq x \leq x_{i}\right\}$.
Therefore $L(P, f)=\sum_{i=1}^{n} m_{i} \Delta x_{i}$, is called the Lower R-sum of f on $[a, b]$ w.r.t partition P.
$U(P, f)=\sum_{i=1}^{n} M_{i} \Delta x_{i}$ is called the Upper R-sum of f on $[a, b]$ w.r.t partition P.

Lemma

Suppose $f(x)$ is a bounded function defined in a closed interval $[a, b]$ and suppose $P=\left\{x_{0}, x_{1}, x_{2}, \cdots, x_{n}\right\}$ is a partition of $[a, b]$. Then

$$
M(b-a) \geq U(P, f) \geq L(P, f) \geq m(b-a)
$$

Darboux's condition of integrability

Class Notes

4th sem
C9(unit 1)
Dr. Rajib
Biswakarma
Assistant
Professor,

Definition

When the two integrals $\int_{a_{-}}^{b} f d x$ and $\int_{a}^{b^{\llcorner }} f d x$ are equal, i.e.,

$$
\int_{a_{-}}^{b} f d x=\int_{a}^{b^{-}} f d x=\int_{a}^{b} f d x
$$

where $\int_{a_{-}}^{b} f d x=\inf \{U(P, f): P$ is any partition of $[a, b]\}$ and $\int_{a}^{b^{-}} f d x=\operatorname{Sup}\{L(P, f): P$ is any partition of $[a, b]\}$. Then we say that f is R -integrable or simply integrable over [a, b] and the common value of this integral is called the Riemann integral or Darboux's integral.

Examples

Class Notes

4th sem C9(unit 1)

Dr. Rajib
Biswakarma
Assistant
Professor,

Example

If $f(x)$ be defined on $[0,1]$ as

$$
f(x)=\left\{\begin{array}{r}
1, \text { if } x \text { is rational } \tag{1}\\
-1, \text { if } x \text { is irrational }
\end{array}\right.
$$

Now, we have to show that $f(x)$ is an example of bounded function which is not R-integrable over $[0,1]$.
Let $P=\left\{x_{0}=0, x_{1}, x_{2}, \cdots, x_{n}=1\right\}$ be any partition of $[0,1]$. Let for any sub-interval $\left[x_{i-1}, x_{i}\right]$ the Sup Inf value of are $M_{i}=1$ and $m_{i}=-1$.
Therefore $U(P, f)=\sum_{i=1}^{n} M_{i} \Delta x_{i}=1(1-0)=1$. $L(P, f)=\sum_{i=1}^{n} m_{i} \Delta x_{i}=-1(1-0)=-1$.
This implies

$$
\int_{0_{-}}^{1} f d x \neq \int_{0}^{\Gamma} f d x
$$

Examples

Class Notes

4th sem
C9(unit 1)
Dr. Rajib
Biswakarma
Assistant
Professor,

Example

Show that $f(x)=x^{2}$ is integrable over $[0, k]$.
Let $P=\left\{0, \frac{k}{n}, \frac{2 k}{n}, \cdots, \frac{n k}{n}=k\right\}$ be any partition of $[0,1]$. Let for any sub-interval $\left[(i-1) \frac{k}{n}, i \frac{k}{n}\right]$ the Sup Inf value of are $M_{i}=\left[(i-1) \frac{k}{n}\right]^{2}$ and $m_{i}=\left[\frac{i k}{n}\right]^{2}$.
Therefore $U\left(P, x^{2}\right)=\sum_{i=1}^{n} M_{i} \Delta x_{i}=\frac{k^{3}}{n^{3}} \frac{n}{6}(n+1)(2 n+1)$. $L\left(P, x^{2}\right)=\sum_{i=1}^{n} m_{i} \Delta x_{i}=\frac{k^{3}}{n^{3}} \frac{n}{6}(n-1)(2 n-1)$.
This implies

$$
\begin{aligned}
\int_{0_{-}}^{k} x^{2} d x & =\lim _{n \rightarrow \infty} \frac{k^{3}}{n^{3}} \frac{n}{6}(n+1)(2 n+1)=\frac{k^{3}}{6} \\
\int_{0}^{k} f d x & =\lim _{n \rightarrow \infty} \frac{k^{3}}{n^{3}} \frac{n}{6}(n-1)(2 n-1)=\frac{k^{3}}{6}
\end{aligned}
$$

Hence the function x^{2} is R -integrable over $[0, k]$.

Related Theorems

Class Notes
4th sem
C9(unit 1)
Dr. Rajib
Biswakarma
Assistant
Professor,
Department of
Mathematics
Silapathar
College

Definition

A partition P^{*} is said to be a refinement of P if $P^{*} \supseteq P$, i.e., every point of P is a point of P^{*}.

Theorem

If P^{*} is a refiement of a partition P, then for a bounded function f,
$1 L\left(P^{*}, f\right) \geq L(P, f)$, and
$2 U\left(P^{*}, f\right) \leq U(P, f)$.

Related Theorems

Class Notes

4th sem
C9(unit 1)
Dr. Rajib
Biswakarma
Assistant
Professor,
Department of Mathematics Silapathar
Coilege

Proof.

Suppose first that P^{*} contains just one point more than P, and let that point is in Δx_{i}, that is, $x_{i-1}<\xi<x_{i}$. As the function is bounded over $[a, b]$, it is bounded in every sub-interval Δx_{i}.
Let w_{1}, w_{2}, m_{i} be the infimum (g.l.b) of f in the intervals $\left[x_{i-1}, \xi\right],\left[\xi, x_{i}\right],\left[x_{i-1}, x_{i}\right]$ respectively Clearly $m_{i} \leq w_{1}, m_{i} \leq w_{2}$
Therefore, $\mathrm{L}\left(\mathrm{P}^{*}, f\right)-L(P, f)$
$=\mathrm{w}_{1}\left(\xi-x_{i-1}\right)+\mathrm{w}_{2}\left(x_{i}-\xi\right)-m_{i}\left(x_{i}-x_{i-1}\right)$
$=w_{1}\left(\xi-x_{i-1}\right)+w_{2}\left(x_{i}-\xi\right)-m_{i}\left(x_{i}-\xi+\xi-x_{i-1}\right)$
$=\left(w_{1}-m_{i}\right)\left(\xi-x_{i-1}\right)+\left(w_{2}-m_{i}\right)\left(x_{i}-\xi\right)$
≥ 0
If P^{*} contains p points more than P, we repeat the above reasoning p times and arrive at $\mathrm{L}\left(\mathrm{P}^{*}, f\right) \geq L(P, f)$ Similarly, we can prove that $\mathrm{U}\left(\mathrm{P}^{*}, f\right) \leq U(P, f)$.

Related Theorems

Class Notes
4th sem C9(unit 1)

Dr. Rajib
Biswakarma
Assistant
Professor,
Department of Mathematics
Silapathar
College

References

Theorem

If P^{*} is a refiement of a partition P contains p points more than P, and function $|f(x)| \leq k$ for all $x \in[a, b]$, then $1 L(P, f) \leq L\left(P^{*}, f\right) \leq L(P, f)+2 p k \mu$, and
$2 U(P, f) \geq U\left(P^{*}, f\right) \geq U(P, f)-2 p k \mu$.

Related Theorems

Class Notes

4th sem
C9(unit 1)
Dr. Rajib
Biswakarma
Assistant
Professor,
Department of
Mathematics
Silapathar
College

Proof.

Proceeding as in the above theorem,

$$
\mathrm{L}\left(\mathrm{P}^{*}, f\right)-L(P, f)=\left(w_{1}-m_{i}\right)\left(\xi-x_{i-1}\right)+\left(w_{2}-m_{i}\right)\left(x_{i}-\xi\right)
$$

Since $|f(x)| \leq k$ for all $x \in[a, b]$ therefore
$-k \leq m_{i} \leq w_{1} \leq k$
$\Rightarrow 0 \leq w_{1}-m_{i} \leq 2 k$
Similarly $0 \leq w_{2}-m_{i} \leq 2 k$
therefore
$\mathrm{L}\left(\mathrm{P}^{*}, f\right)-L(P, f) \leq 2 k\left(\xi-x_{i-1}\right)+2 k\left(x_{i}-\xi\right)=2 k \Delta x_{i} \leq 2 k \mu$ Now supposing that each additional point is introduced one by one, by repeating the above reasoning p times we get
$\mathrm{L}(\mathrm{P}, \mathrm{f}) \leq L\left(P^{*}, f\right) \leq L(P, f)+2 p k \mu$.
Similarly the other result may be proved.

Class Notes
4th sem C9(unit 1)

Dr. Rajib
Biswakarma
Assistant
Professor,
Department of
Mathematics
Silapathar
College

Malik, S. C. and Arora, S., Mathematical Analysis, New Age International Publishers.
https: //en.wikipedia.org/wiki/MathematicalAnalysis (Accessed from Internet)

