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Faraday’s law

In a series of epoch-making experiments in 1831, Michael Faraday

demonstrated that an electric current may be induced in a circuit by

changing the magnetic flux enclosed by the circuit. That discovery is

made even more useful when extended to the general statement that a

changing magnetic field produces an electric field. Such ‘‘induced’’ elec-

tric fields are very different from the fields produced by electric charge,

and Faraday’s law of induction is the key to understanding their

behavior.

3.1 The integral form of Faraday’s law

In many texts, the integral form of Faraday’s law is written as

I
C

~E � d~l ¼ � d

dt

Z
S

~B � n̂ da Faraday’s law ðintegral formÞ:

Some authors feel that this form is misleading because it confounds two

distinct phenomena: magnetic induction (involving a changing magnetic

field) and motional electromotive force (emf) (involving movement of a

charged particle through a magnetic field). In both cases, an emf is

produced, but only magnetic induction leads to a circulating electric field

in the rest frame of the laboratory. This means that this common version

of Faraday’s law is rigorously correct only with the caveat that ~E rep-

resents the electric field in the rest frame of each segment d~l of the path of

integration.
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A version of Faraday’s law that separates the two effects and makes

clear the connection between electric field circulation and a changing

magnetic field is

emf ¼ � d

dt

Z
S

~B � n̂ da Flux rule,

I
C

~E � d~l ¼ �
Z
S

@~B

@t
� n̂ da Faraday’s law ðalternate formÞ:

Note that in this version of Faraday’s law the time derivative operates

only on the magnetic field rather than on the magnetic flux, and both ~E

and ~B are measured in the laboratory reference frame.

Don’t worry if you’re uncertain of exactly what emf is or how it is

related to the electric field; that’s all explained in this chapter. There are

also examples of how to use the flux rule and Faraday’s law to solve

problems involving induction – but first you should make sure you

understand the main idea of Faraday’s law:

Changing magnetic flux through a surface induces an emf in any

boundary path of that surface, and a changing magnetic field induces

a circulating electric field.

In other words, if the magnetic flux through a surface changes, an electric

field is induced along the boundary of that surface. If a conducting

material is present along that boundary, the induced electric field pro-

vides an emf that drives a current through the material. Thus quickly

poking a bar magnet through a loop of wire generates an electric field

within that wire, but holding the magnet in a fixed position with respect

to the loop induces no electric field.

And what does the negative sign in Faraday’s law tell you? Simply that

the induced emf opposes the change in flux – that is, it tends to maintain

the existing flux. This is called Lenz’s law and is discussed later in this

chapter.
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Here’s an expanded view of the standard form of Faraday’s law:

Note that ~E in this expression is the induced electric field at each segment

d~l of the path C measured in the reference frame in which that segment is

stationary.

And here is an expanded view of the alternative form of Faraday’s law:

 =
C

d
–dl

dt
E

The electric
field in V/m

Reminder that the
electric field is a
vector

Reminder that this is a line
integral (not a surface or a
volume integral)

An incremental segment
of path C

Tells you to sum up the
contributions from each
portion of the closed path C
in a direction given by the
right-hand rule

 ˆ
S

danB

Dot product tells you to find
the part of E parallel to dl
(along path C)

The rate of change
with time

The magnetic flux
through any surface
bounded by C

∫ ∫
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C
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∫ ∫
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In this case, ~E represents the electric field in the laboratory frame of

reference (the same frame in which ~B is measured).

Faraday’s law and the flux rule can be used to solve a variety of

problems involving changing magnetic flux and induced electric fields, in

particular problems of two types:

(1) Given information about the changing magnetic flux, find the

induced emf.

(2) Given the induced emf on a specified path, determine the rate of

change of the magnetic field magnitude or direction or the area

bounded by the path.

In situations of high symmetry, in addition to finding the induced emf, it

is also possible to find the induced electric field when the rate of change of

the magnetic field is known.
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~E The induced electric field

The electric field in Faraday’s law is similar to the electrostatic field in its

effect on electric charges, but quite different in its structure. Both types of

electric field accelerate electric charges, both have units of N/C or V/m,

and both can be represented by field lines. But charge-based electric fields

have field lines that originate on positive charge and terminate on

negative charge (and thus have non-zero divergence at those points),

while induced electric fields produced by changing magnetic fields have

field lines that loop back on themselves, with no points of origination or

termination (and thus have zero divergence).

It is important to understand that the electric field that appears in the

common form of Faraday’s law (the one with the full derivative of the

magnetic flux on the right side) is the electric field measured in the ref-

erence frame of each segment d~l of the path over which the circulation is

calculated. The reason for making this distinction is that it is only in this

frame that the electric field lines actually circulate back on themselves.

E

+

–

Electric field lines
orginate on positive
charges and terminate
on negative charges

(a)

N

Magnet motion

B

E

Electric field lines
form complete loops
around boundary

As magnet moves to
right, magnetic flux
through surface
decreases

Surface may be real
or purely imaginary

S

(b)

Figure 3.1 Charge-based and induced electric fields. As always, you should

remember that these fields exist in three dimensions, and you can see full 3-D

visualizations on the book’s website.
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Examples of a charge-based and an induced electric field are shown in

Figure 3.1.

Note that the induced electric field in Figure 3.1(b) is directed so as to

drive an electric current that produces magnetic flux that opposes the

change in flux due to the changing magnetic field. In this case, the motion of

the magnet to the right means that the leftward magnetic flux is decreasing,

so the induced current produces additional leftward magnetic flux.

Here are a few rules of thumb that will help you visualize and sketch

the electric fields produced by changing magnetic fields:

� Induced electric field lines produced by changing magnetic fields must

form complete loops.

� The net electric field at any point is the vector sum of all electric fields

present at that point.

� Electric field lines can never cross, since that would indicate that the

field points in two different directions at the same location.

In summary, the~E in Faraday’s law represents the induced electric field at

each point along path C, a boundary of the surface through which the

magnetic flux is changing over time. The path may be through empty

space or through a physical material – the induced electric field exists in

either case.
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H
C
ðÞdl The line integral

To understand Faraday’s law, it is essential that you comprehend the

meaning of the line integral. This type of integral is common in physics

and engineering, and you have probably come across it before, perhaps

when confronted with a problem such as this: find the total mass of a wire

for which the density varies along its length. This problem serves as a

good review of line integrals.

Consider the variable-density wire shown in Figure 3.2(a). To deter-

mine the total mass of the wire, imagine dividing the wire into a series of

short segments over each of which the linear density k (mass per unit

length) is approximately constant, as shown in Figure 3.2(b). The mass of

each segment is the product of the linear density of that segment times the

segment length dxi, and the mass of the entire wire is the sum of the

segment masses.

For N segments, this is

Mass ¼
XN
i¼1

ki dxi: ð3:1Þ

Allowing the segment length to approach zero turns the summation of

the segment masses into a line integral:

Mass ¼
ZL
0

kðxÞ dx: ð3:2Þ

This is the line integral of the scalar function k(x). To fully comprehend

the left side of Faraday’s law, you’ll have to understand how to extend

this concept to the path integral of a vector field, which you can read

about in the next section.

x0 L

Density varies with x: λ =  λ (x) 

1 2 3

dx1 dx2 dx3 dxN

(a)

(b)
λ λ λ Nλ

Figure 3.2 Line integral for a scalar function.
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H
C
~A � d~l The path integral of a vector field

The line integral of a vector field around a closed path is called the

‘‘circulation’’ of the field. A good way to understand the meaning of this

operation is to consider the work done by a force as it moves an object

along a path.

As you may recall, work is done when an object is displaced under the

influence of a force. If the force ð~FÞ is constant and in the same direction

as the displacement ðd~lÞ, the amount of work (W) done by the force is

simply the product of the magnitudes of the force and the displacement:

W ¼ j~Fj jd~lj: ð3:3Þ
This situation is illustrated in Figure 3.3(a). In many cases, the dis-

placement is not in the same direction as the force, and it then becomes

necessary to determine the component of the force in the direction of the

displacement, as shown in Figure 3.3(b).

In this case, the amount of work done by the force is equal to the

component of the force in the direction of the displacement multiplied by

the amount of displacement. This is most easily signified using the dot

product notation described in Chapter 1:

W ¼ ~F � d~l ¼ j~Fjjd~lj cosðhÞ; ð3:4Þ

where h is the angle between the force and the displacement.

In the most general case, the force ~F and the angle between the force

and the displacement may not be constant, which means that the pro-

jection of the force on each segment may be different (it is also possible

that the magnitude of the force may change along the path). The general

case is illustrated in Figure 3.4. Note that as the path meanders from the

starting point to the end, the component of the force in the direction of

the displacement varies considerably.

F
F

dl dl

u

Work = F ° dl = |F | |dl| cos uWork = |F | |dl|

(a) (b)

Figure 3.3 Object moving under the influence of a force.
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To find the work in this case, the path may be thought of as a series of

short segments over each of which the component of the force is constant.

The incremental work (dWi) done over each segment is simply the com-

ponent of the force along the path at that segment times the segment

length (dli) – and that’s exactly what the dot product does. Thus,

dWi ¼ ~F � d~li; ð3:5Þ

and the work done along the entire path is then just the summation of the

incremental work done at each segment, which is

W ¼
XN
i¼1

dWi ¼
XN
i¼1

~F � d~li: ð3:6Þ

As you’ve probably guessed, you can now allow the segment length to

shrink toward zero, converting the sum to an integral over the path:

W ¼
Z
P

~F � d~l: ð3:7Þ

Thus, the work in this case is the path integral of the vector ~F over path

P. This integral is similar to the line integral you used to find the mass of

a variable-density wire, but in this case the integrand is the dot product

between two vectors rather than the scalar function k.

Start
End

Path of object

F

Path divided into 
N segments

dl1

dl8

1
2

3

8

N

F
F

u8

u1

Component of  F 
in direction of dl8

dl8

F

u8

Force

Figure 3.4 Component of force along object path.

A student’s guide to Maxwell’s Equations66



Although the force in this example is uniform, the same analysis

pertains to a vector field of force that varies in magnitude and direction

along the path. The integral on the right side of Equation 3.7 may be

defined for any vector field ~A and any path C. If the path is closed, this

integral represents the circulation of the vector field around that path:

Circulation �
I
C

~A � d~l: ð3:8Þ

The circulation of the electric field is an important part of Faraday’s law,

as described in the next section.
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H
C
~E � d~l The electric field circulation

Since the field lines of induced electric fields form closed loops, these

fields are capable of driving charged particles around continuous circuits.

Charge moving through a circuit is the very definition of electric current,

so the induced electric field may act as a generator of electric current. It is

therefore understandable that the circulation of the electric field around a

circuit has come to be known as an ‘‘electromotive force’’:

electromotive force ðemfÞ ¼
I
C

~E � d~l: ð3:9Þ

Of course, the path integral of an electric field is not a force (which must

have SI units of newtons), but rather a force per unit charge integrated

over a distance (with units of newtons per coulomb times meters, which

are the same as volts). Nonetheless, the terminology is now standard, and

‘‘source of emf’’ is often applied to induced electric fields as well as to

batteries and other sources of electrical energy.

So, exactly what is the circulation of the induced electric field around a

path? It is just the work done by the electric field in moving a unit charge

around that path, as you can see by substituting ~F=q for ~E in the circu-

lation integral: I
C

~E � d~l ¼
I
C

~F

q
� d~l ¼

H
C
~F � d~l
q

¼ W

q
: ð3:10Þ

Thus, the circulation of the induced electric field is the energy given to

each coulomb of charge as it moves around the circuit.
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d
dt

R
S
~B � n̂ da The rate of change of flux

The right side of the common form of Faraday’s law may look intimi-

dating at first glance, but a careful inspection of the terms reveals that the

largest portion of this expression is simply the magnetic flux ðUBÞ:

UB ¼
Z
S

~B � n̂ da:

If you’re tempted to think that this quantity must be zero according to

Gauss’s law for magnetic fields, look more carefully. The integral in this

expression is over any surface S, whereas the integral in Gauss’s law is

specifically over a closed surface. The magnetic flux (proportional to the

number of magnetic field lines) through an open surface may indeed be

nonzero – it is only when the surface is closed that the number of mag-

netic field lines passing through the surface in one direction must equal

the number passing through in the other direction.

So the right side of this form of Faraday’s law involves the magnetic

flux through any surface S – more specifically, the rate of change with

time (d/dt) of that flux. If you’re wondering how the magnetic flux

through a surface might change, just look at the equation and ask

yourself what might vary with time in this expression. Here are three

possibilities, each of which is illustrated in Figure 3.5:

� The magnitude of ~B might change: the strength of the magnetic field

may be increasing or decreasing, causing the number of field lines

penetrating the surface to change.

� The angle between~B and the surface normal might change: varying the

direction of either ~B or the surface normal causes ~B � n̂ to change.

� The area of the surface might change: even if the magnitude of ~B and

the direction of both ~B and n̂ remain the same, varying the area of

surface S will change the value of the flux through the surface.

Each of these changes, or a combination of them, causes the right side of

Faraday’s law to become nonzero. And since the left side of Faraday’s

law is the induced emf, you should now understand the relationship

between induced emf and changing magnetic flux.

To connect the mathematical statement of Faraday’s law to physical

effects, consider the magnetic fields and conducting loops shown in

Figure 3.5. As Faraday discovered, the mere presence of magnetic flux
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through a circuit does not produce an electric current within that circuit.

Thus, holding a stationary magnet near a stationary conducting loop

induces no current (in this case, the magnetic flux is not a function of

time, so its time derivative is zero and the induced emf must also be zero).

Of course, Faraday’s law tells you that changing the magnetic flux

through a surface does induce an emf in any circuit that is a boundary to

that surface. So, moving a magnet toward or away from the loop, as in

Figure 3.5(a), causes the magnetic flux through the surface bounded by

the loop to change, resulting in an induced emf around the circuit.4

In Figure 3.5(b), the change in magnetic flux is produced not by

moving the magnet, but by rotating the loop. This changes the angle

between the magnetic field and the surface normal, which changes~B � n̂. In
Figure 3.5(c), the area enclosed by the loop is changing ove r tim e, whi ch

changes the flux through the surface. In each of these cases, you should

note that the magnitude of the induced emf does not depend on the total

amount of magnetic flux through the loop – it depends only on how fast

the flux changes.

Before looking at some examples of how to use Faraday’s law to solve

problems, you should consider the direction of the induced electric field,

which is provided by Lenz’s law.

B

Rotating loop

B

Loop of decreasing radius

N

Magnet motionB

Induced current
Induced current

Induced current

(a) (b) (c)

Figure 3.5 Magnetic flux and induced current.

4 For simplicity, you can imagine a planar surface stretched across the loop, but Faraday’s
law holds for any surface bounded by the loop.
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� Lenz’s law

There’s a great deal of physics wrapped up in the minus sign on the right

side of Faraday’s law, so it is fitting that it has a name: Lenz’s law. The

name comes from Heinrich Lenz, a German physicist who had an

important insight concerning the direction of the current induced by

changing magnetic flux.

Lenz’s insight was this: currents induced by changing magnetic flux

always flow in the direction so as to oppose the change in flux. That is, if

the magnetic flux through the circuit is increasing, the induced current

produces its own magnetic flux in the opposite direction to offset the

increase. This situation is shown in Figure 3.6(a), in which the magnet

is moving toward the loop. As the leftward flux due to the magnet

increases, the induced current flows in the direction shown, which

produces rightward magnetic flux that opposes the increased flux from

the magnet.

The alternative situation is shown in Figure 3.6(b), in which the magnet

is moving away from the loop and the leftward flux through the circuit is

decreasing. In this case, the induced current flows in the opposite direc-

tion, contributing leftward flux to make up for the decreasing flux from

the magnet.

It is important for you to understand that changing magnetic flux

induces an electric field whether or not a conducting path exists in which

a current may flow. Thus, Lenz’s law tells you the direction of the cir-

culation of the induced electric field around a specified path even if no

conduction current actually flows along that path.

N S

Magnet motion

B

(a) (b)

Leftward flux 
increases as 
magnet approaches

Current produces 
rightward flux

N S

Magnet motion

Leftward flux 
decreases as 
magnet recedes

Current produces 
more leftward flux

B

Figure 3.6 Direction of induced current.
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H
C
~E � d~l ¼ � d

dt

R
S
~B � n̂ da Applying Faraday’s

law (integral form)

The following examples show you how to use Faraday’s law to solve

problems involving changing magnetic flux and induced emf.

Example 3.1: Given an expression for the magnetic field as a function of

time, determine the emf induced in a loop of specified size.

Problem: For a magnetic field given by

~Bðy; tÞ ¼ B0
t

t0

� �
y

y0
ẑ:

Find the emf induced in a square loop of side L lying in the xy-plane

with one corner at the origin. Also, find the direction of current flow in

the loop.

Solution: Using Faraday’s flux rule,

emf ¼ � d

dt

Z
S

~B � n̂ da:

For a loop in the xy-plane, n̂ ¼ ẑ and da = dx dy, so

emf ¼ � d

dt

Z L

y¼0

Z L

x¼0

B0
t

t0

� �
y

y0
ẑ � ẑ dx dy,

and

emf ¼ � d

dt
L

Z L

y¼0

B0
t

t0

� �
y

y0
dy

� 	
¼ � d

dt
B0

t

t0

� �
L3

2y0

� 	
:

Taking the time derivative gives

emf ¼ �B0
L3

2t0y0
:

Since upward magnetic flux is increasing with time, the current will

flow in a direction that produces flux in the downward ð�ẑÞ direction.

This means the current will flow in the clockwise direction as seen

from above.
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Example 3.2: Given an expression for the change in orientation of a

conducting loop in a fixed magnetic field, find the emf induced in the loop.

Problem: A circular loop of radius r0 rotates with angular speed x in a

fixed magnetic field as shown in the figure.

(a) Find an expression for the emf induced in the loop.

(b) If the magnitude of the magnetic field is 25 lT, the radius of the loop
is 1 cm, the resistance of the loop is 25W, and the rotation rate x is 3

rad/s, what is the maximum current in the loop?

Solution: (a) By Faraday’s flux rule, the emf is

emf ¼ � d

dt

Z
S

~B � n̂ da

Since the magnetic field and the area of the loop are constant, this becomes

emf ¼ �
Z
S

d

dt
ð~B � n̂Þ da ¼ �

Z
S

~B


 

 d

dt
ðcos hÞ da:

Using h=xt, this is

emf ¼ �
Z
S

~B


 

 d

dt
ðcosxtÞ da ¼ � ~B



 

 d
dt

ðcosxtÞ
Z
S

da:

Taking the time derivative and performing the integration gives

emf ¼ ~B


 

xðsinxtÞðpr20Þ:

(b) By Ohm’s law, the current is the emf divided by the resistance of the

circuit, which is

I ¼ emf

R
¼

~B


 

xðsinxtÞðpr20Þ

R
:

For maximum current, sin(xt)=1, so the current is

I ¼ ð25· 10�6Þð3Þ½pð0:012Þ�
25

¼ 9:4 · 10�10A:

B
v
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Example 3.3: Given an expression for the change in size of a conducting

loop in a fixed magnetic field, find the emf induced in the loop.

Problem: A circular loop lying perpendicular to a fixed magnetic field

decreases in size over time. If the radius of the loop is given by r(t) =

r0(1�t/t0), find the emf induced in the loop.

Solution: Since the loop is perpendicular to the magnetic field, the loop

normal is parallel to ~B, and Faraday’s flux rule is

emf ¼ � d

dt

Z
S

~B � n̂ da ¼ � ~B


 

 d

dt

Z
S

da ¼ � ~B


 

 d

dt
ðpr2Þ:

Inserting r(t) and taking the time derivative gives

emf ¼ � ~B


 

 d

dt

�
pr20 1� t

t0

� �2	
¼ � ~B



 

�pr20ð2Þ 1� t

t0

� �
� 1

t0

� �	
;

or

emf ¼ 2 ~B


 

pr20
t0

1� t

t0

� �
:
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3.2 The differential form of Faraday’s law

The differential form of Faraday’s law is generally written as

~r ·~E ¼ � @~B

@t
Faraday’s law:

The left side of this equation is a mathematical description of the curl of

the electric field – the tendency of the field lines to circulate around a

point. The right side represents the rate of change of the magnetic field

over time.

The curl of the electric field is discussed in detail in the following

section. For now, make sure you grasp the main idea of Faraday’s law in

differential form:

A circulating electric field is produced by a magnetic field that changes

with time.

To help you understand the meaning of each symbol in the differential

form of Faraday’s law, here’s an expanded view:

E� =

Reminder that the
del operator is a vector

Reminder that the electric
field is a vector

The differential
operator called 
“del” or “nabla”

The cross-product turns
the del operator into the  
curl

The electric
field in V/m

× �B
–

�t
The rate of change
of the magnetic field
with time
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~r · Del cross – the curl

The curl of a vector field is a measure of the field’s tendency to circulate

about a point – much like the divergence is a measure of the tendency of

the field to flow away from a point. Once again we have Maxwell to

thank for the terminology; he settled on ‘‘curl’’ after considering several

alternatives, including ‘‘turn’’ and ‘‘twirl’’ (which he thought was some-

what racy).

Just as the divergence is found by considering the flux through an

infinitesimal surface surrounding the point of interest, the curl at a spe-

cified point may be found by considering the circulation per unit area

over an infinitesimal path around that point. The mathematical definition

of the curl of a vector field ~A is

curlð~AÞ ¼ ~r· ~A � lim
DS!0

1

DS

I
C

~A � d~l; ð3:11Þ

where C is a path around the point of interest and DS is the surface area

enclosed by that path. In this definition, the direction of the curl is the

normal direction of the surface for which the circulation is a maximum.

This expression is useful in defining the curl, but it doesn’t offer much

help in actually calculating the curl of a specified field. You’ll find an

alternative expression for curl later in this section, but first you should

consider the vector fields shown in Figure 3.7.

To find the locations of large curl in each of these fields, imagine that

the field lines represent the flow lines of a fluid. Then look for points at

1

3

5

4

7

2

6

(a) (b) (c)

Figure 3.7 Vector fields with various values of curl.
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which the flow vectors on one side of the point are significantly different

(in magnitude, direction, or both) from the flow vectors on the opposite

side of the point.

To aid this thought experiment, imagine holding a tiny paddlewheel at

each point in the flow. If the flow would cause the paddlewheel to rotate,

the center of the wheel marks a point of nonzero curl. The direction of the

curl is along the axis of the paddlewheel (as a vector, curl must have both

magnitude and direction). By convention, the positive-curl direction is

determined by the right-hand rule: if you curl the fingers of your right hand

along the circulation, your thumb points in the direction of positive curl.

Using the paddlewheel test, you can see that points 1, 2, and 3 in

Figure 3.7(a) and points 4 and 5 in Figure 3.7(b) are high-curl locations.

The uniform flow around point 6 in Figure 3.7(b) and the diverging flow

lines around point 7 in Figure 3.7(b) would not cause a tiny paddlewheel

to rotate, meaning that these are points of low or zero curl.

To make this quantitative, you can use the differential form of the curl

or ‘‘del cross’’ ð~r·Þ operator in Cartesian coordinates:

~r· ~A ¼ î
@

@x
þ ĵ

@

@y
þ k̂

@

@z

� �
· ð̂iAx þ ĵAy þ k̂AzÞ: ð3:12Þ

The vector cross-product may be written as a determinant:

~r· ~A ¼
î ĵ k̂
@
@x

@
@y

@
@z

Ax Ay Az














; ð3:13Þ

which expands to

~r· ~A ¼ @Az

@y
� @Ay

@z

� �
îþ @Ax

@z
� @Az

@x

� �
ĵþ @Ay

@x
� @Ax

@y

� �
k̂: ð3:14Þ

Note that each component of the curl of ~A indicates the tendency of the

field to rotate in one of the coordinate planes. If the curl of the field at a

point has a large x-component, it means that the field has significant

circulation about that point in the y–z plane. The overall direction of the

curl represents the axis about which the rotation is greatest, with the

sense of the rotation given by the right-hand rule.

If you’re wondering how the terms in this equation measure rotation,

consider the vector fields shown in Figure 3.8. Look first at the field in
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Figure 3.8(a) and the x-component of the curl in the equation: this term

involves the change in Az with y and the change in Ay with z. Proceeding

along the y-axis from the left side of the point of interest to the right, Az is

clearly increasing (it is negative on the left side of the point of interest and

positive on the right side), so the term @Az/@y must be positive. Looking

now at Ay, you can see that it is positive below the point of interest and

negative above, so it is decreasing along the z axis. Thus, @Ay/@z is

negative, which means that it increases the value of the curl when it is

subtracted from @Az/@y. Thus the curl has a large value at the point of

interest, as expected in light of the circulation of ~A about this point.

The situation in Figure 3.8(b) is quite different. In this case, both @Ay/@z

and @Az/@y are positive, and subtracting @Ay/@z from @Az/@y gives a small

result. The value of the x-component of the curl is therefore small in this

case. Vector fields with zero curl at all points are called ‘‘irrotational.’’

Here are expressions for the curl in cylindrical and spherical coordinates:

r · ~A � 1

r

@Az

@’
� @A’

@z

� �
r̂ þ @Ar

@z
� @Az

@r

� �
’̂

þ 1

r

@ðrA’Þ
@r

� @Ar

@’

� �
ẑ ðcylindricalÞ;

ð3:15Þ

r ·~A � 1

r sin h

@ðA’ sin hÞ
@h

� @Ah

@’

� �
r̂ þ 1

r

1

sin h
@Ar

@’
� @ðrA’Þ

@r

� �
ĥ

þ 1

r

@ðrAhÞ
@r

� @Ar

@h

� �
’̂ ðsphericalÞ:

ð3:16Þ

x

y

z

x

y

z
(a) (b)

Figure 3.8 Effect of @Ay/@z and @Az/@Y on value of curl.
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~r·~E The curl of the electric field

Since charge-based electric fields diverge away from points of positive

charge and converge toward points of negative charge, such fields cannot

circulate back on themselves. You can understand that by looking at the

field lines for the electric dipole shown in Figure 3.9(a). Imagine moving

along a closed path that follows one of the electric field lines diverging

from the positive charge, such as the dashed line shown in the figure. To

close the loop and return to the positive charge, you’ll have to move

‘‘upstream’’ against the electric field for a portion of the path. For that

segment, ~E � d~l is negative, and the contribution from this part of the

path subtracts from the positive value of~E � d~l for the portion of the path

in which ~E and d~l are in the same direction. Once you’ve gone all the way

around the loop, the integration of ~E � d~l yields exactly zero.

Thus, the field of the electric dipole, like all electrostatic fields, has

no curl.

Electric fields induced by changing magnetic fields are very different, as

you can see in Figure 3.9(b). Wherever a changing magnetic field exists, a

circulating electric field is induced. Unlike charge-based electric fields,

induced fields have no origination or termination points – they are

continuous and circulate back on themselves. Integrating ~E � d~l around
any boundary path for the surface through which ~B is changing produces

a nonzero result, which means that induced electric fields have curl. The

faster ~B changes, the larger the magnitude of the curl of the induced

electric field.

1 2

∂B/∂t(a) (b)
E

E

E E

Figure 3.9 Closed paths in charge-based and induced electric fields.
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~r· ~E ¼ � @~B
@t Applying Faraday’s law (differential form)

The differential form of Faraday’s law is very useful in deriving the

electromagnetic wave equation, which you can read about in Chapter 5.

You may also encounter two types of problems that can be solved using

this equation. In one type, you’re provided with an expression for the

magnetic field as a function of time and asked to find the curl of the

induced electric field. In the other type, you’re given an expression for the

induced vector electric field and asked to determine the time rate of

change of the magnetic field. Here are two examples of such problems.

Example 3.4: Given an expression for the magnetic field as a function of

time, find the curl of the electric field.

Problem: The magnetic field in a certain region is given by the expression

~BðtÞ ¼ B0 cosðkz� xtÞ ĵ.
(a) Find the curl of the induced electric field at that location.

(b) If the Ez is known to be zero, find Ex.

Solution: (a) By Faraday’s law, the curl of the electric field is the negative

of the derivative of the vector magnetic field with respect to time. Thus,

~r· ~E ¼ � @~B

@t
¼ � @ B0 cosðkz� xtÞ½ � ĵ

@t
;

or

~r· ~E ¼ �xB0 sinðkz� xtÞ ĵ:
(b) Writing out the components of the curl gives

@Ez

@y
� @Ey

@z

� �
îþ @Ex

@z
� @Ez

@x

� �
ĵþ @Ey

@x
� @Ex

@y

� �
k̂ ¼ �xB0 sinðkz� xtÞ̂j:

Equating the ĵ components and setting Ez to zero gives

@Ex

@z

� �
¼ �xB0 sinðkz� xtÞ:

Integrating over z gives

Ex ¼
Z
�xB0 sinðkz� xtÞdz ¼ x

k
B0 cosðkz� xtÞ,

to within a constant of integration.
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Example 3.5: Given an expression for the induced electric field, find the

time rate of change of the magnetic field.

Problem: Find the rate of change with time of the magnetic field at a

location at which the induced electric field is given by

~Eðx; y; zÞ ¼ E0
z

z0

� �2

îþ x

x0

� �2

ĵþ y

y0

� �2

k̂

" #
:

Solution: Faraday’s law tells you that the curl of the induced electric field

is equal to the negative of the time rate of change of the magnetic field.

Thus

@~B

@t
¼ �~r · ~E;

which in this case gives

@~B

@t
¼ � @Ez

@y
� @Ey

@z

� �
î� @Ex

@z
� @Ez

@x

� �
ĵ� @Ey

@x
� @Ex

@y

� �
k̂,

@~B

@t
¼ �E0

2y

y20

� �
îþ 2z

z20

� �
ĵþ 2x

x20

� �
k̂

� 	
:

Problems

You can exercise your understanding of Faraday’s law on the following

problems. Full solutions are available on the book’s website.

3.1 Find the emf induced in a square loop with sides of length a lying in

the yz-plane in a region in which the magnetic field changes over time

as ~BðtÞ ¼ B0e
�5t=t0 î.

3.2 A square conducting loop with sides of length L rotates so that the

angle between the normal to the plane of the loop and a fixed

magnetic field ~B varies as h(t)¼ h0(t/t0); find the emf induced in the

loop.

3.3 A conducting bar descends with speed v down conducting rails in the

presence of a constant, uniform magnetic field pointing into the page,

as shown in the figure.

(a) Write an expression for the emf induced in the loop.

(b) Determine the direction of current flow in the loop.
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