
EM 3 Section 14: Electromagnetic Energy and the Poynting Vector

14. 1. Poynting’s Theorem (Griffiths 8.1.2)

Recall that we saw that the total energy stored in electromagnetic fields is:

U = UM + UE =
1

2

∫
allspace
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B2 + ε0E
2

)
dV (1)

Let us now derive this more generally. Consider some distribution of charges and currents.
In small time dt a charge will move vdt and, according to the Lorentz force law, the work
done on the charge will be

dU = F · dl = q(E + v ×B) · vdt = qE · vdt

where as usual the magnetic forces do no work. Now let q = ρdV (usual definition of
charge density) and ρv = J (usual definition of current). Then dividing through by dt and
integrating over a volume V containing the charges, we find that the rate at which work is
done (i.e. the power delivered to the system) is

dU

dt
=
∫
V
E · J dV (2)

Thus E · J is the power delivered per unit volume. Now use MIV to express

E · J =
1

µ0

E · (∇×B)− ε0E ·
∂E

∂t

Furthermore we can use a product rule from lecture 1 to write

E · (∇×B) = B · (∇× E)−∇ · (E ×B)

= −B · ∂B
∂t
−∇ · (E ×B)

where we used MIII in the last line. Putting it all together, and noting
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yields
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Finally we can integrate over the volume V containing the currents and charges and use the
divergence theorem on the second term to obtain from (2)
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∮
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(E ×B) · dS (3)

Let us now examine each term in Poynting’s Theorem (3): the left hand side is the power
delivered to the volume i.e. the rate of gain in energy of the particles; the first term on

1



the right hand side is the rate of loss of electromagnetic energy stored in fields within the
volume; the second term is the rate of energy transport out of the volume i.e. across the
surface S.

Thus Poynting’s theorem reads: energy lost by fields = energy gained by particles+ energy
flow out of volume. Hence we can identify the vector

S =
1

µ0

E ×B (4)

as the energy flux density (energy per unit area per unit time) and it is known as the
Poynting vector (it ‘Poynts’ in the direction of energy transport).

Also we can write Poynting’s theorem as a continuity equation for the total energy U =
Uem + Umec. The left hand side of (3) is the rate of change of mechanical energy thus

d(Uem + Umec)

dt
= −

∮
S
S · dA

(to avoid a nasty clash of notation with S as Poynting vector we use dA rather than dS
as vector element of area). As usual, expressing energy as a volume over energy densities
uem,umec and using the divergence theorem on the right hand side we arrive at

∂

∂t
(uem + umec) = −∇ · S (5)

which is the continuity equation for energy density. Thus the Poynting vector represents the
flow of energy in the same way that the current J represents the flow of charge.

14. 2. Energy of Electromagnetic Waves (Griffiths 9.2.3)

As we saw last lecture a monochromatic plane wave in vacuo propagating in the ez direction
is described by the fields:

E = exE0 cos(kz − ωt) B = eyB0 cos(kz − ωt) (6)

where

B0 =
E0

c

The total energy stored in the fields associated with the wave is:

U = UE + UM =
1

2

∫
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+ ε0E
2

)
dV

Now since |B| = |E|/c and c = 1/
√
µ0ε0 we see that the electric and magnetic contributions

to the total energy are equal and the electromagnetic energy density is (for a linearly polarised
wave)

uEM = ε0E
2 = ε0E

2
0 cos2(kz − ωt)

The Poynting vector becomes for monochromatic waves

S =
1

µ0

(E ×B) = cε0E
2
0 cos2(kz − ωt)ez = uEMcez
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Note that S is just the energy density multiplied by the velocity of the wave cez as it should
be. Generally

S = uEMck̂

N.B To compute the Poynting vector it is simplest to use a real form for the fields B and
E rather than a complex exponential representation.

The time average of the energy density is is defined as the average over one period T of the
wave
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The energy density of an electromagnetic wave is proportional to the square of the amplitude
of the electric (or magnetic) field.

14. 3. Example of discharging capacitor

Consider a discharging circular parallel plate capacitor (plates area A) in a circuit with a

Figure 1: Discharging capacitor in a circuit with a resistor

resistor R. Ohm’s law gives

Vd =
Q

C
= IR

or

I = −dQ

dt
=

Q

RC
⇒ Q = Q0e

−t/RC I =
Q0

RC
e−t/RC

Now assume a ‘quasistatic’ approximation where we treat the fields as though they were
static:

E = − Q

Aε0
n̂ = − Q

Aε0
e−t/RC

We take the normal to the plates (direction of E) is n̂. Now we can compute B through
Ampère-Maxwell noting that the cylindrical symmetry implies that B is circumferential.
The Amperian loop is a circle radius r between the capacitor plates where J = 0

∮
B · dl = µ0

∫
S

(
J + ε0

∂E

∂t

)
· dS = −µ0πr

2ε0
∂

∂t

(
Q0

Aε0
e−t/RC

)

3



The lhs = 2πrBφ so

B =
µ0I(t)r

2A
eφ

The Poynting vector is given by

S =
1

µ0

E ×B = − Q

Aε0
e−t/RC µ0I0

r

2A
e−t/RCez × eφ =

I2
0CR

2A2ε0
re−2t/RCer

Thus the Poynting vector and the direction of energy flow point radially out of the capacitor.

14. 4. ∗Momentum of electromagnetic radiation

Let us reinterpret the Poynting vector from a quantum perspective. Due to wave-particle
duality, radiation can be thought of as photons travelling with speed c with energy

ε = h̄ω = hν

The momentum of a single photon

p = h̄k =
ε

c
k̂

For n photons per unit volume travelling at speed c we can interpret the average Poynting
vector as average energy density nε multiplied by velocity vector ck̂

〈S〉 = nεck̂ = 〈uEM〉ck̂

Again thinking of the energy transport as effected by photons, we must have an accompa-
nying momentum flux P̃

P̃ is defined as the momentum carried across a plane normal to propagation, per unit area
per unit time

For each photon p = ε/c (along k̂) so

P̃ = S/c

If light strikes the absorber (normal incidence) momentum is absorbed, this creates a force
per unit area equal to the incoming (normal) momentum flux

This causes radiation pressure

prad = P̃ · n̂ = S/c ⇒ prad = 〈uEM〉

If light is reflected not absorbed so twice the momentum is imparted, prad doubles but so
does 〈uEM〉, and this result still holds.

To understand radiation pressure classically let’s go back to the example of an x polarised
wave propagating in ez direction: the electric field moves charges, on the surface the radiation
strikes, in the x direction; then the Lorentz force qv×B (with v in the x direction and B in
the y direction) is in the ez direction and creates the pressure.

Above is for a collimated light beam (i.e. single direction) The other extreme is “diffuse
radiation” = light bouncing around in all directions; this gives instead

prad = 〈uEM〉/3

(the factor 1/3 is as in kinetic theory of gases).
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