3.4 THE TRANSPOSE OF A MATRIX

 such that if A is a matrix of order $(m \times n)$, then A^{\prime} will be a matrix of order $(n \times m)$.For example, if $A=\left[\begin{array}{lll}2 & 3 & 2 \\ 4 & 0 & 1\end{array}\right]_{2 \times 3}$, then the transpose of A, that is A^{\prime} will be a matrix of order (3×2)

$$
A^{\prime}=\left[\begin{array}{ll}
2 & 4 \\
3 & 0 \\
2 & 1
\end{array}\right]_{3 \times 2}
$$

But in case of symmetric matrix, the transpose of the matrix $\left(A^{\prime}\right)$ is equal to the original matrix (A). For example, two symmetric matrices C and D are given below and their transposes are equal to C and D respectively.

$$
C=\left[\begin{array}{ll}
2 & 5 \\
5 & 3
\end{array}\right]=C^{\prime \prime} \quad D=\left[\begin{array}{lll}
2 & 1 & 4 \\
1 & 0 & 5 \\
4 & 5 & 3
\end{array}\right]=D^{\prime}
$$

There are certain theorems on transposed matrices. They are:
(a) the transpose of a transposed matrix is equal to the original matrix such that

$$
\begin{equation*}
\left(A^{\prime}\right)^{\prime}=A \tag{3.15}
\end{equation*}
$$

(b) the transpose of the sum of matrices is equal to the sum of transposed matrices. That implies

$$
\begin{equation*}
(A+B)^{\prime}=A^{\prime}+B^{\prime} \tag{3.16}
\end{equation*}
$$

Similarly $\quad(A+B+C)^{\prime}=A^{\prime}+B^{\prime}+C^{\prime}$
For example, if

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
2 & 2 \\
3 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
4 & 0 \\
5 & 2
\end{array}\right] \text { then } \\
(A+B)^{\prime} & =\left\{\left[\begin{array}{ll}
2 & 2 \\
3 & 2
\end{array}\right]+\left[\begin{array}{ll}
4 & 0 \\
5 & 2
\end{array}\right]\right\}^{\prime} \\
& =\left[\begin{array}{ll}
2+4 & 2+0 \\
3+5 & 2+2
\end{array}\right]^{\prime}=\left[\begin{array}{ll}
6 & 2 \\
8 & 4
\end{array}\right] \\
& =\left[\begin{array}{ll}
6 & 8 \\
2 & 4
\end{array}\right]
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
A^{\prime}+B^{\prime} & =\left[\begin{array}{ll}
2 & 2 \\
3 & 2
\end{array}\right]^{\prime}+\left[\begin{array}{ll}
4 & 0 \\
5 & 2
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 3 \\
2 & 2
\end{array}\right]+\left[\begin{array}{ll}
4 & 5 \\
0 & 2
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{ll}
2+4 & 3+5 \\
2+0 & 2+2
\end{array}\right]=\left[\begin{array}{ll}
6 & 8 \\
2 & 4
\end{array}\right]
$$

$\therefore \quad(A+B)^{\prime}=A^{\prime}+B^{\prime}$
Similarly

$$
(A+B+C)^{\prime}=A^{\prime}+B^{\prime}+C^{\prime}
$$

We can also establish the theorem that the transpose of the difference of two matrices is equal to the difference of the transpose of the matrices such that

$$
\begin{equation*}
(A-B)^{\prime}=A^{\prime}-B^{\prime} \tag{3.17}
\end{equation*}
$$

(c) the transpose of the product of two matrices is equal to the product of the transposes of the matrices in reverse order. This implies

$$
\begin{equation*}
(A B)^{\prime}=B^{\prime} A^{\prime} \tag{3.18}
\end{equation*}
$$

For example if

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
3 & 2 \\
1 & 4
\end{array}\right] \text { then } \\
(A B)^{\prime} & =\left\{\left[\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right]\left[\begin{array}{ll}
3 & 2 \\
1 & 4
\end{array}\right]\right\}^{\prime} \\
& =\left[\begin{array}{ll}
6+1 & 4+4 \\
0+3 & 0+12
\end{array}\right]=\left[\begin{array}{cc}
7 & 8 \\
3 & 12
\end{array}\right] \\
& =\left[\begin{array}{ll}
7 & 3 \\
8 & 12
\end{array}\right] \\
B^{\prime} A^{\prime} & =\left[\begin{array}{ll}
3 & 2 \\
1 & 4
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right] \\
& =\left[\begin{array}{ll}
3 & 1 \\
2 & 4
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
1 & 3
\end{array}\right] \\
& =\left[\begin{array}{ll}
6+1 & 0+3 \\
4+4 & 0+12
\end{array}\right]=\left[\begin{array}{cc}
7 & 3 \\
8 & 12
\end{array}\right] \\
(A B)^{\prime} & =B^{\prime} A^{\prime} . \\
(A B C)^{\prime} & =C^{\prime} B^{\prime} A^{\prime} .
\end{aligned}
$$

But

Here
Similarly

gasix Of A MATRXX AND PROPERTIES OF INVERSE

In ordinary algebra, any number has a reciprocal. Thus for any number x, x^{-1} represents its reciprocal or its inverse such that

$$
x \cdot x^{-1}=x^{-1} \cdot x=1
$$

Similarly in matrix algebra, the inverse of a matrix A, denoted by A^{-1} is defined if A is a square matrix and that the inverse of A exists satisfying the condition

