THESTOEMATRIGES

A particular structure of a matrix is normally identified by the name given to a particular matrix. So we can have various types of matrices depending on the dimension of the matrix and the value of its elements.

(I) Square matrix

A matrix whose number of rows and number of columns are equal is called a square matrix. Matrices A and B are square matrix, but C, is not a square matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]_{2 \times 2} ; B=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]_{3 \times 3} ; C=\left[\begin{array}{ll}
a & b \\
c & d \\
e & f
\end{array}\right]_{3 \times 2}
$$

(II) Identify or unit matrix

The square matrix whose principal diagonal elements are 1 and all other elements are zero, is called an identity matrix or unit matrix. It must be noted that identity must always be a square matrix. We can have identity matrix of order 2 or order 3 or any other order depending on the dimension of square matrix and symbolised by I_{2} or I_{3} or I_{n} etc.

$$
\therefore \quad I_{2}=\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]_{2 \times 2} ; I_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]_{3 \times 3} ; I_{n}=\left[\begin{array}{ccc}
1 & 0 \ldots \ldots . .0 \\
0 & 1 \ldots \ldots \\
\vdots & \\
0 & 0 \ldots \ldots . .1
\end{array}\right]_{n \times n}
$$

The identity matrix plays a role similar to the role played by number 1 in ordinary algebra. In ordinary algebra, for any number $a, 1 \times a=a \times 1=a$. The same is true in case of identity matrix. Any matrix, say A, pre-multiplied or post-multiplied by an identity matrix will give the original matrix (A). Thus

$$
I A=A I=A
$$

$$
\begin{aligned}
& \text { For example if } A=\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 4 & 2
\end{array}\right], \text { then } \\
& \qquad \begin{aligned}
I A & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]_{2 \times 2}\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 4 & 2
\end{array}\right]_{2 \times 3} \\
& =\left[\begin{array}{lll}
2 \times 1+0 \times 1 & 1 \times 1+0 \times 4 & 1 \times 3+0 \times 2 \\
0 \times 2+1 \times 1 & 0 \times 1+1 \times 4 & 0 \times 3+1 \times 2
\end{array}\right] \\
& =\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 4 & 2
\end{array}\right]=A
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
A I & =\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 4 & 2
\end{array}\right]_{2 \times 3}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]_{3 \times 3} \\
& =\left[\begin{array}{lll}
2 \times 1+1 \times 0+3 \times 0 & 2 \times 0+1 \times 1+3 \times 0 & 2 \times 0+1 \times 0+3 \times 1 \\
1 \times 1+4 \times 0+2 \times 0 & 1 \times 0+4 \times 1+2 \times 0 & 1 \times 0+4 \times 0+2 \times 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 4 & 2
\end{array}\right]=A
\end{aligned}
$$

Another feature of identity matrix is that we can insert or delete an identity matrix during the process of multiplication without affecting the matrix product. Suppose we have a product of two matrices $A B$. We can also write $A B=A I B$ where I is identity matrix.

(III) Scalar matrix

A matrix which has a common scalar element in the principal diagonal and zeros everywhere else is known as scalar matrix. If λ is the common scalar, the scalar matrix will be

$$
\left[\begin{array}{cccc}
\lambda & 0 & \ldots & 0 \\
0 & \lambda & \ldots & 0 \\
\vdots & & & \\
0 & 0 & \ldots & \lambda
\end{array}\right]_{n \times n}=\lambda I_{n}
$$

A scalar matrix needs be a square matrix.

(IV) Diagonal matrix

A matrix which has scalar elements, not necessarily equal, in the principal diagonal and zeros in the off-diagonal positions is called a diagonal matrix. For instance

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right] \text { is a diagonal matrix. }
$$

In general term,

$$
A=\left[\begin{array}{cccc}
a_{11} & 0 & \ldots & 0 \\
0 & a_{22} & \ldots & 0 \\
\vdots & & & \\
0 & 0 & \ldots & a_{n n}
\end{array}\right]_{n \times n}=\left[a_{i j}\right] \begin{aligned}
& i, j=1,2, \ldots, n \\
& a_{i j}=0 i \neq j
\end{aligned}
$$

is a diagonal matrix of order $(n \times n)$. The diagonal matrix needs be a square matrix.

(V) Null matrix

A matrix whose all elements are zero, is defined as a null matrix and is symbolised by capital 0 . Unlike identity matrix, null matrix need not be a square matrix. For instance, we can have null matrix

$$
\begin{aligned}
& \underset{(2 \times 2)}{O}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]_{2 \times 2} \quad \underset{(3 \times 2)}{O}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]_{3 \times 2} \\
& \underset{(n \times n)}{O}=\left[\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & & & \\
0 & 0 & \ldots & 0
\end{array}\right]_{n \times n}
\end{aligned}
$$

The function of null matrix is almost similar to the function of zero in ordinary algebra. Just like in ordinary algebra $a \times 0=0$ and $a+0=a$, in matrix algebra also

$$
A \cdot 0=0 \quad \text { and } \quad A+0=A
$$

But unlike ordinary algebra, $A B=0$ does not imply that either A or B is a null matrix.

(VI) Symmetric matrix

A matrix whose elements are such that if we interchange the corresponding rows and columns the matrix remains the same, is called a symmetric matrix. In symmetric matrix, therefore, the elements of corresponding rows and columns are the same.

For instance,

$$
A=\left[\begin{array}{lll}
3 & 2 & 3 \\
2 & 1 & 4 \\
3 & 4 & 2
\end{array}\right] \text { or } A=\left[\begin{array}{lll}
4 & 0 & 2 \\
0 & 1 & 5 \\
2 & 5 & 3
\end{array}\right]
$$

represents symmetric matrix. In general term

$$
\begin{align*}
A & =\left[a_{i j}\right]_{n \times n} \quad \text { where } a_{i j}=a_{j i} \tag{3.14}\\
i, j & =1,2, \ldots n
\end{align*}
$$

is a symmetric matrix of order ($n \times n$). It may be noted that identity matrix is a special variety of symmetric matrix.

(VII) Triangular matrix

A matrix whose all the elements in one side of the principal diagonal are zeros, is called a triangular
marix. For instance matrix. For instance

$$
A=\left[\begin{array}{llll}
3 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
5 & 2 & 4 & 0 \\
1 & 3 & 2 & 2
\end{array}\right]_{4 \times 4} \quad \text { and } B=\left[\begin{array}{llll}
2 & 5 & 1 & 3 \\
0 & 4 & 2 & 2 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & 2
\end{array}\right]_{4 \times 4}
$$

It is called triangular matrix, because both the zero elements and the non-zero elements form a triangle.

There are some other types of matrices like singular matrix, non-singular matrix, orthogonal matrix, idempotent matrix etc., but they will be discussed only when the concepts of transpose of matrix, determinant, inverse matrix etc. are explained in the subsequent sections.

