
S2 Base Mathemaics and its Application in Economcs 

S MATRIX OPERATIONS 

() Equality of matrices 
Two matrices A and B are said to be equal if and only if the dimension of both the matrices are the 
same and each element in corresponding locations of A and B has the same value. Alternatively, 
A- B ifa= b, for all values of i andj. 

For example 

but 

Ifwe have the vectors 

- it means that x = 10 and y = 20. 

(II) Addition of matrices 

Two matrices can be added ifand only if they have the same dimension. The addiüon of two matrices 
A and Bwill give a third matrix C whose elements are the algebric sum ofthe corresponding elements 
ofA and B. For example. 

if 

then A +B C 

5+1 2+4]| 
-1+2 3+2| 

Similarly, if we define 

As 
A =la21 a2 asand B= |b1 b b3 

then A+ B 21 +b age + by2 aqs+ b2s 
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C21 C22 C2s 

In general term 

la)+b=e] where «, 4,+ Dy 
The matrix (or vector) addition satisfies the following properties 

A+B B +A 
(A +B) + C = A + (B +C). 

(3.11) 
(3.12) 

(LL) Subtraction of matrices 

The substraction of two matrices can also be defined in a similar fashion. The subtraction of two 
matrices A and B is possible if and only if the dimension of A and B are equal. The subtraction of B 
from A (say) will give another matrix C whose elements will be the algebric difference between the 
corresponding elements ofA andB. 

Thus if 

A-B =-4 3-21 s 
-B *|2-3 9-s| 4 

then 

Thus in general term 

la-=l] where c =a-b 
(IV) Scalar multiplication 

When a matrix is multiplied by a number (which is termed as scalar in matrix algebra), each and 
every element of the matrix is multiplied by that number. Such a multiplications is called "scalar 

muliplication". For example if a matrix A = |is multiplied by a scalar 3, then the resultant 

scalar matrix will be 

5x3 2x3 15 6 34 -
3x3 10x39 30 

In general term, the scalar multiplication is defined as 

Mal= al =l«,a (3.13) 
where is a scalar. 

The scalar multiplication also holds true for vectors. 

() Matrix multiplication 

Before we explain the technique of muliplicatioin of two matrices, say A and B, it would be most 
appropriate to state the condition necessary for matrix multiplication, that is the condition of 
conformability. The matrices A and B are conformable for multiplication in the form AB if the 
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