$27-5-21$
Vector Differentiation and Integration:
Differentiation of a vector with respect to time:
If a vector changes in magnitude as cull as direction continuously with respect to some scalar variable, then such a vector is a function of this scalar variable, so that it can be differentiated with respect to that scalar variable and a new vector is obtained. If the scalar variable is time, the result of differentiation of the vector with time is called time derivative of the vector

Velocity and acceleration
Let $\vec{\gamma}$ be the position vector of a particle at time t, \vec{r} is α function of variable 't.

As time increases, the particle moves and the position vector changes in direction and magnitude, when time changes from ' t ' to ' t ' st', $\vec{\gamma}$ becomes $\vec{r}+\overrightarrow{\delta_{r}}$ at Q as shown in figure 1 .

The average rate of change of the position vector with time ' t ' is given by,

$$
\frac{r+\delta r-\vec{r}}{l+\delta t-t}=\frac{b \vec{y}}{\delta t}, \longrightarrow 0
$$

In the limit when st $\longrightarrow 0$, the rate of charge of \vec{r} with time is called first time derivative.. and whiten as $\frac{d \vec{r}}{d t}$. , ie $\lim _{\delta t \rightarrow 0} \frac{\delta \vec{\partial}}{\delta 1}=\frac{d \vec{r}}{d t}$

Again, the rate of change of position wart. time is velocity.

$$
\begin{equation*}
\therefore \vec{v}=\frac{d \vec{r}}{d t} \tag{2}
\end{equation*}
$$

We have in cartesian w-ordinater,

$$
\begin{align*}
& \vec{r}= x \hat{i}+y \hat{j}+z \hat{k} \\
& \therefore \vec{v}=\frac{d \vec{x}}{d t}=\frac{d x}{d t} \hat{i}+\frac{d y}{d t} \hat{j}+\frac{d z}{d t} \hat{k} \\
& \vec{v}=v_{x} \hat{i}+v_{y} \hat{j}+v_{z} \hat{k} \tag{3}
\end{align*}
$$

Similarly, the second time derivative of position w.r.t time gives the acceleration, \vec{a} of the particle. Thus,

$$
\begin{equation*}
\vec{a}=\frac{d^{2} \vec{y}}{d t^{2}}=\frac{d \vec{v}}{d t} \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& \Rightarrow \vec{a}=\frac{d^{2} x}{d t^{2}} \hat{i}+\frac{d^{2} y}{d t^{2}} \hat{j}+\frac{d^{2} z}{d t^{2}} \hat{k} \\
& \Rightarrow \vec{a}=\frac{d v_{x}}{d t} \hat{i}+\frac{d v_{y}}{d t} \hat{j}+\frac{d v_{z}}{d t} \hat{k} . \\
& \Rightarrow \vec{a}=a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k} . \tag{5}
\end{align*}
$$

Force \vec{F} acting on the particle of mass m is given by Newton's second law of motion.

$$
\vec{F}=m \vec{a}=m \frac{d^{2} \vec{q}}{d t^{2}}
$$

Differentiation of Sums and Products
(1) Differentiation of suns of the vectors:

Let, $\vec{R}=\vec{A}+\vec{B}$. $\quad \vec{A}$ and \vec{B} are the functions of ' t '
For a change of time from t to $t+\delta t$, we have.

$$
\vec{R}+8 \vec{R}=(\vec{A}+\overrightarrow{8 A})+(\vec{B}+8 \vec{B})
$$

Hence, $\quad \delta \vec{R}=\overrightarrow{\delta A}+\overrightarrow{\delta B} \quad(\because \vec{R}=\vec{A}+\vec{B})$
Dividing this by $\delta+$ and pulting the limit, we get,

$$
\begin{aligned}
\lim _{\delta t \rightarrow 0} \frac{\delta \vec{R}}{\delta t} & =\lim _{\delta t \rightarrow 0} \frac{\delta \vec{A}}{\delta t}+\lim _{\delta t \rightarrow 0} \frac{\delta \vec{B}}{\delta t} \\
\frac{d \vec{R}}{d t} & =\frac{d \vec{A}}{d t}+\frac{d \vec{B}}{d t}
\end{aligned}
$$

Scanned with CamScanner

$$
\frac{d \vec{R}}{d t}=\frac{d \vec{A}}{d t}+\frac{d \vec{B}}{d t}
$$

So, that such differentiation is distributive' and holds good for any given number i.e.,

$$
\frac{d}{d t}(\vec{A}+\vec{B}+\vec{C}+\ldots)=\frac{d \vec{A}}{d t}+\frac{d \vec{B}}{d t}+\frac{d \vec{C}}{d t}+\cdots \cdots
$$

Similarly, we can show that for difference of vectors

$$
\begin{equation*}
\frac{d}{d t}(\vec{A}-\vec{B})=\frac{d \vec{A}}{d t}-\frac{d \vec{B}}{d t} \tag{9}
\end{equation*}
$$

(2) Differentiation of Scalar Product of two vectors, $\vec{A} \cdot \vec{B}$.

Let $\vec{R}=\vec{A} \cdot \vec{B}$, the increase st in ' A ' gives,

$$
\begin{aligned}
& \vec{R}+\delta \vec{R}=(\vec{A}+\delta \vec{R}) \cdot(\vec{B}+\delta \vec{B}) \\
& \vec{R}+\delta \vec{R}=\vec{A} \cdot \vec{B}+\vec{A} \cdot \delta \vec{B}+\vec{B} \cdot \delta \vec{A}+\delta \vec{A} \cdot \delta \vec{B}
\end{aligned}
$$

Now, on neglecting the $\delta \vec{A} \cdot \delta \vec{B}$ which is sural, we get,

$$
\delta \vec{R}=\vec{A} \cdot \delta \vec{B}+\vec{B} \cdot \delta \vec{A} \quad(\because \vec{R}=\vec{A} \cdot \vec{B})
$$

Dividing by δt and proceeding the limit, we get,

$$
\frac{d \vec{R}}{d t}=\frac{d}{d t}(\vec{A} \cdot \vec{B})=\vec{A} \cdot \frac{d \vec{B}}{d t}+\vec{B} \cdot \frac{d \vec{A}}{d t}
$$

(3) Differentiation of Vector Product $\vec{A} \times \vec{B}$.

Let $\vec{R}=\vec{A} \times \vec{B}$.
Now, $\vec{R}+\overrightarrow{\delta R}=(\vec{A}+8 \vec{A}) \times(\vec{B}+\delta \vec{B})$

$$
\Rightarrow \vec{R}+\delta \vec{R}=\vec{A} \times \vec{B}+A \times \delta \vec{B}+\delta \vec{A} \times \vec{B}+\delta \vec{A} \times \delta \vec{B} .
$$

Neglecting $\delta \vec{A} \times \delta \vec{B}$ and dividing by of ut as before, we get

$$
\begin{align*}
& \frac{d}{d t}(\vec{R})=\frac{d}{d t}(\vec{A} \times d \vec{B}+d \vec{A} \times \vec{B}) \\
\Rightarrow & \frac{d \vec{R}}{d t}=\vec{A} \times \frac{d \vec{B}}{d t}+\frac{d \vec{A}}{d t} \times \vec{B} \tag{11}
\end{align*}
$$

(4) Differentiation of Triple Products.
(a) In Scalar Triple Product:

$$
\begin{align*}
\frac{d}{d t}[\vec{A} \cdot(\vec{B} \times \vec{C})]= & \frac{d \vec{A}}{d t} \cdot(\vec{B} \times \vec{C})+\vec{A} \cdot\left[\frac{d \vec{B}}{d t} \times \vec{C}\right] \\
& +\vec{A} \cdot\left[\vec{B} \times \frac{d \vec{C}}{d t}\right]
\end{align*}
$$

(5) In Vector Triple Product:
Happy's

$$
\begin{aligned}
\frac{d}{d t}[\vec{A} \times(\vec{B} \times \vec{C})]= & \frac{d \vec{A}}{d t} \times(\vec{B} \times \vec{C})+\vec{A} \times\left(\frac{d \vec{B}}{d t} \times \vec{C}\right) \\
& +\vec{A} \times\left(\vec{B} \times \frac{d \vec{C}}{d t}\right) \longrightarrow \text { (13) }
\end{aligned}
$$

Fields: Scalar and Vector
Field: If a physical quantity varies from point to point in space it can be expressed as a continuous function of the position of a point in a region of space, then such a function is called the function of position or point function and the region in which it specifies the physical quantity is called the field. Two main kinds of fields are:
(-) Scalar fields:
A scalar field is represented by a continuo scalar function $\phi(x, y, z)$ giving the value of quantity at each point. In all practical cases, the magnitude of such function does not change abruptly when it passes from any point to another close to it.
eq: distribution of temperature, magnetic and dectrostatic potentials etc.
(b) Veter fill:

A vector fill is represented at every point by a contineous vector function $\vec{F}(x, y, z)$. At any given point of field, the function $\vec{F}(x, y, z)$ is specified by a vector of definite magnitude and direction, both of which change continuously from point to point throughout the fill regor. Example: the distribution of velocity in a fluid, distribution of electric and magnetic field interienty de.

Partial Differentiation and Gradient.
Partial Differentiation:
If $\phi(x, y, z)$ is a scalar function of position in space, ie of w-ordinates x, y, z, then $\frac{d \phi}{\delta x}$ denotes the rate of change of ϕ writ x when y and z remain constant, is called partial differentiation. Similarly, $\frac{\delta \phi}{\text { by }}$ and $\frac{\delta \phi}{\delta I}$ denotes the rate of change of $\phi w r t y$ and z heaputinaly.

Gradient:
The valor function $\hat{i} \frac{\delta \phi}{\delta x}+\hat{\delta} \frac{\delta \phi}{\delta y}+\hat{E} \frac{\delta \phi}{\delta z}$ is called gradient of the scalar function

$$
\begin{align*}
g a d & =\hat{i} \frac{\delta \phi}{\delta x}+\int \frac{\delta \phi}{\delta y}+\hat{k} \frac{\delta \phi}{\delta z} \tag{14}\\
d \phi & =\frac{\delta \phi}{\delta x} d x+\frac{\delta \phi}{\delta y} d y+\frac{\delta \phi}{\delta z} d z \tag{115}
\end{align*}
$$

If $\vec{r}=\hat{i}+\hat{j} y+\hat{\varepsilon} z$ is the radius vector of the point in space from the origin, then.

$$
\begin{aligned}
& \overrightarrow{d r}=\hat{j} d x+\hat{\jmath} d y+\hat{k} d z \\
& d \phi=(\hat{i} d x+\hat{\jmath} d y+\hat{k} d z) \cdot\left(\hat{i} \frac{\delta \phi}{\delta x}+\hat{\jmath} \frac{\delta \phi}{\delta y}+\hat{k} \frac{\delta \phi}{\delta z}\right)
\end{aligned}
$$

$\Rightarrow d \phi=\overrightarrow{d r} \cdot \operatorname{grad} \phi$.

$$
\Rightarrow d \phi=\operatorname{grad} \phi \cdot \overrightarrow{d r} .
$$

The operator $(\vec{\nabla})$: (read as del or nabla)

$$
\begin{aligned}
\vec{\nabla} & =\hat{i} \frac{\delta}{\delta x}+\hat{\gamma} \frac{\delta}{\delta y}+\hat{k} \frac{\delta}{\delta z} . \\
\operatorname{grad} \phi & =\left(\hat{i} \frac{\delta}{\delta x}+\hat{\gamma} \frac{\delta}{\delta y}+\frac{\hat{\delta}}{\delta z}\right) \phi=\vec{\nabla} \phi \\
\therefore d \phi & =\vec{\nabla} \phi \cdot d \vec{r}=(\vec{\nabla} \cdot d \vec{r}) \phi=\hat{r}^{12}
\end{aligned}
$$

Physical Meaning of the Gradient of the Scalar Function:
Let us consider Two surfaces s_{1} and s_{2} very close together and ϕ and $\phi+d \phi$ are the correspondery scalar functions. Choose points A and B on the thur surfaces as shown in figure 2 .

fig: 2

$$
\begin{aligned}
& \overrightarrow{O A}=\vec{r} \\
& \overrightarrow{O B}=\vec{r}+\overrightarrow{d r} \\
& \overrightarrow{A B}=\overrightarrow{d r}
\end{aligned}
$$

The last distance between two surfaces S_{1} and ξ_{2} is $\overrightarrow{A C}$ in the direction of normal at \vec{A}. Let \hat{x} be the unit vector along $\overrightarrow{A C}$ and $\overrightarrow{A C}=d \vec{n}$.

$$
\begin{equation*}
d \vec{n}=d r \cos \theta=\hat{n} \cdot d \vec{r} \tag{18}
\end{equation*}
$$

The rale of increase of ϕ at A in the direction of $A B$ will be $\frac{d \phi}{\delta r}$ and this rate of increase becomes greatest only when δr is minimums, ie, along $\overrightarrow{A C}$ which is the least distance between surfaces. So that greater rate of increment is $\frac{\delta \phi}{\delta n}$, in the
direction of \hat{x},

$$
\therefore d \phi=\frac{\delta_{\phi}}{\delta x} d x
$$

Substituting from (10) we god,

$$
\begin{equation*}
d \phi=\frac{\delta \phi}{\delta n} \hat{n} \cdot \overrightarrow{d r} \tag{18}
\end{equation*}
$$

But $d \phi=(\vec{\nabla} \cdot d \vec{r}) \phi$.

$$
d \phi=(\nabla \phi \cdot \overrightarrow{d r})
$$

Equating these two values, we get

$$
\begin{aligned}
\vec{\nabla} \phi \cdot d \vec{r} & =\frac{\delta \phi}{\delta n} \hat{n} \cdot \overrightarrow{d r} \\
\nabla \phi & =\frac{\delta \phi}{\delta_{n}} \hat{n}=\nabla \operatorname{grad} \phi .
\end{aligned}
$$

Thus, the gradient of scalar field grad ϕ or $\nabla \phi$ is a vutor whore magnitude at any point is equal to the maximums rate of increase of $\$$ and directed along the direction in which this maximum change ours, i.e, perpendicular to lencl sunfore at that point.

Ex: Let v be the potential due to static changes then dutivic field intensity at any point is in the dinution of the greatest rate of decease of polintual and its magnitude is equal to

Oprations using $\vec{\nabla}$
(1) Divergance:
(∇. Avector \longrightarrow Ascalar)
Let $\vec{F}=\hat{i} F_{x}+\hat{\jmath} F_{y}+\hat{b} F_{z}$, is a vilorfild.
then, $\vec{\nabla} \cdot \vec{F}=\nabla_{x} F_{x}+\nabla_{y} F_{y}+\nabla_{x} F_{z} \cdot\binom{\vec{\nabla}=\nabla_{x} \hat{i}+\nabla_{y} \hat{j}}{+\nabla_{x} \hat{k}}$
ox, $\nabla \cdot F=\frac{\delta F x}{\delta x}+\frac{\delta F y}{\delta y}+\frac{\delta F z}{\delta z} \cdots$

This sum is imvariant under a co-ordinate transfor -mation, i.e it is quite independent of the unit vectors that may be chisem.
For a different systom.

$$
\nabla^{\prime} \cdot \vec{F}=\frac{\delta F_{x^{\prime}}}{\delta x^{\prime}}+\frac{\delta F_{y^{\prime}}^{\prime}}{\delta y^{\prime}}+\frac{\delta F_{\lambda^{\prime}}}{\delta z^{\prime}}
$$

$\nabla^{\prime} \cdot \vec{F}=\vec{\nabla} \cdot \vec{F}$ for eveng poind in space.
$\therefore \vec{\nabla} . \vec{F}$ is ascalar fild which must repreent some phypical quantly.
(2) Curl:

$$
\begin{aligned}
& \vec{\nabla} \times \vec{F}=\text { mus } \vec{F}=A \text { vector. } \\
& \nabla \times \vec{F}=\left|\begin{array}{ccc}
\hat{i} & \hat{\gamma} & \hat{k} \\
\delta / \delta x & \delta / \delta y & \gamma / \delta x \\
F_{x} & F_{y} & F_{x}
\end{array}\right|
\end{aligned}
$$

Thus, we get,

$$
\begin{aligned}
& \vec{\nabla} \phi=\operatorname{grad} \phi=\text { A vector. } \\
& \vec{\nabla} \cdot \vec{F}=\operatorname{div} \vec{F}=A \text { scalar. } \\
& \vec{\nabla} \times \vec{F}=\operatorname{cusl} \vec{F}=A \text { vector. } .
\end{aligned}
$$

Second derivative of vector fields:
Q $\nabla .(\nabla \phi)$ div. of a gradient of of
(b) $\nabla \times(\nabla \phi)$ curl of a gradient o ϕ
(c) $\vec{\nabla}(\nabla \cdot \vec{F})$ gradient of a divergence of \vec{F}
(d) $\vec{\nabla} \cdot(\vec{\nabla} \times \vec{F})$ divengeres of a curl of \vec{F}
(c) $\vec{\nabla} \times(\vec{\nabla} \times \vec{F})$ curt of a cult of \vec{F}.
$\left(\right.$ (b) $\nabla \times(\nabla \phi)=(\vec{\nabla} \times \vec{\nabla}) \phi=0 \quad\left(\because \begin{array}{c}\text { cult \& } 2 \text { equal } \\ \text { vector }=0\end{array}\right)$
(d) $O \cdot(\nabla \times \vec{F})=0$ ($q 2$ of the 3 vectors are equal, \downarrow Import fond. thin product is 0)

The Laplacion oprator

$$
\nabla(\nabla \phi)=\nabla \cdot \nabla \phi=(\nabla-\nabla) \phi=\nabla^{2} \phi \text {. }
$$

∇^{2} has a special name \rightarrow The Laplacian Operator $(\vec{\nabla} \cdot \vec{\nabla})$

$$
\text { Laplaian }=\nabla^{2}=\frac{\delta^{2}}{\delta x^{2}}+\frac{\delta^{2}}{\delta y^{2}}+\frac{\delta^{2}}{\delta z^{2}} \cdot(\text { A scalarqty) }
$$

Gul of Cust:
we have,

$$
\begin{align*}
\vec{A} \times(\vec{B} \times \vec{C}) & =\vec{B}(\vec{A} \cdot \vec{C})-(\vec{A} \cdot \vec{B}) \vec{C} \\
\therefore \vec{\nabla} \times(\vec{\nabla} \times \vec{F}) & =\vec{\nabla}(\vec{\nabla} \cdot \vec{F})-(\vec{\nabla} \cdot \vec{\nabla}) \vec{F} \\
\nabla \times(\nabla \times \vec{F}) & =\vec{\nabla}(\vec{\nabla} \cdot \vec{F})-\vec{\nabla}^{2} \vec{F}
\end{align*}
$$

Important Conclusion:
(1) $\vec{\nabla} \cdot \Delta \phi=\nabla^{2} \phi=5$ calar
(1) $\vec{\sigma}_{x}(\nabla \phi)=0$
(5) $\vec{O}(\vec{\nabla} \cdot \vec{F})=A$ vector
(4) $\vec{\nabla} \cdot(0 \times \vec{F})=0$
(5) $\vec{\nabla} \times(\vec{\nabla} \times \vec{F})=\vec{\nabla}(\vec{\nabla} \cdot \vec{F})-\nabla^{2} \vec{F}$
(6) $(\overrightarrow{0} \cdot \overrightarrow{0}) \vec{F}=\nabla F F=$ A vitor.

Physical Meaning of Divergence:
If \vec{v} is the velocity of a fluid at af point, then Diu \vec{u} at a point inside the fluid is the rate at which the flusid is flowing avar from the point per unit volume.
' D_{i}, ' \longrightarrow Amount of flux.
tee value of $\vec{\nabla} \cdot \vec{v} \rightarrow$ fluid ie expanding, density is decreasing
-re value of $\vec{\nabla} \cdot \vec{v} \rightarrow$ fluid is contracting, density is increasing.

Leg : Divergence of Current density \rightarrow (current /unit ara)
At a point gives the amount of chare flowing ont / see / unit volume from a closed surface sumounding the poind.
$\vec{\nabla} \cdot \vec{v}=0 \longrightarrow$ flu x entering any element of spore $=$ flux leaving it.

A If $\vec{\nabla} \cdot \vec{A}=0$; A is called Solenoidal victor
Happy's

