Dr. Rajib Biswakarma Silapathar College, Silapathar, Assam-787059, India

Target Audience:BSc Mathematics(H)C2.1

Real Sequences

Dr. Rajib Biswakarma Silapathar College, Silapathar, Assam-787059, India

Target Audience: BSc Mathematics(H)C2.1

(日) (四) (日) (日) (日)

Content of the Course

Real Sequences

Dr. Rajib Biswakarma Silapathar College, Silapathar, Assam-787059, India

Target Audience:BSc Mathematics(H)C2.1

- 1 Basics of Sequences.
- 2 Examples.
- **3** Bounded Sequences.
- 4 Know about the inequality $|x| < k \Leftrightarrow -k < x < k$.

- 5 Examples.
- 6 Convergence of Sequences.
- 7 Examples.

Basics of Sequence

Real Sequences

Dr. Rajib Biswakarma Silapathar College, Silapathar, Assam-787059, India

Target Audience:BSc Mathematics(H)C2.1

Definition

A sequence is a function f with domain \mathbb{N} of natural numbers and the range contained in the set of real numbers \mathbb{R} i.e., $f: \mathbb{N} \to \mathbb{R}$.

Let the value of function f at $n \in \mathbb{N}$ is a_n i.e., $f(n) = a_n$. Thus a real sequence is denoted as $\langle a_n \rangle$ and at n = 1, 2, ... we have $f = a_1, a_2, ...$ respectively. Here a_n is the n^{th} term or general term of the sequence.

Definition

The set of all distinct terms of sequences $\langle a_n \rangle$ is called range set of the sequence.

Note: Range set of the sequence may be finite or infinite set but Sequence must be infinite.

Dr. Rajib Biswakarma Silapathar College, Silapathar, Assam-787059, India

Target Audience:BSc Mathematics(H)C2.1

Examples

Example

 $1 < a_n > = < n^2 >, n \in \mathbb{N}.$

- **2** < $a_n > = < 2 >$, $n \in \mathbb{N}$.
- $a_n > = < (-1)^n >, n \in \mathbb{N}.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $4 < a_n > = < \frac{1}{n} >, n \in \mathbb{N}.$

Dr. Rajib Biswakarma Silapathar College, Silapathar, Assam-787059, India

Target Audience:BSc Mathematics(H)C2.1

Examples

Example

- $1 < a_n > = < n^2 : n \in \mathbb{N} > = < n^2 > = < 1, 4, 9, ... >,$ Range of the sequence = $\{1, 4, 9, ...\}$
- 2 $(a_n) = (2 : n \in \mathbb{N}) = (2, 2, 2, ...),$ Range of the sequence = $\{2\}.$
- $\ 3 < a_n > = < (-1)^n : n \in \mathbb{N} > = < -1, 1, -1, 1, ... >, \\ \text{Range of the sequence} = \{-1, 1\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

4 $< a_n > = < \frac{1}{n} : n \in \mathbb{N} > = < 1, \frac{1}{2}, \frac{1}{3}, ... >$, Range of the sequence $= \{1, \frac{1}{2}, \frac{1}{3}, ... \}$.

Bounded Sequences with Some Examples

Real Sequences

Dr. Rajib Biswakarma Silapathar College, Silapathar, Assam-787059, India

Target Audience:BSc Mathematics(H)C2.1

Definition

A sequence $X = \langle a_n \rangle$ of real number is said to be bounded if there exists a real number M > 0 such that $|a_n| \leq M$, $\forall n \in \mathbb{N}$.

Definition

A sequence $X = \langle a_n \rangle$ of real number is said to be bounded above if there exists a real number M such that $a_n \leq M$, $\forall n \in \mathbb{N}$.

Definition

A sequence $X = \langle a_n \rangle$ of real number is said to be bounded below if there exists a real number *m* such that $a_n \geq m$, $\forall n \in \mathbb{N}$.

Know about the inequality $|x| < k \Leftrightarrow -k < x < k$

Sequences

Dr. Rajib Biswakarma Silapathar College, Silapathar, Assam-787059, India

Target Audience:BSc Mathematics(H)C2.1 For real numbers x, k > 0 show that $|x| < k \Leftrightarrow -k < x < k$ **proof:** We know that,

$$|x| = \begin{cases} x, \text{ when } x \ge 0 \\ -x, \text{ when } x < 0 \end{cases}$$

$$\Rightarrow |x| = max(x, -x) < k$$

$$\Leftrightarrow x < k \land -x < k$$

$$\Leftrightarrow x < k \land -k < x$$

$$\Leftrightarrow -k < x < k$$

Examples

Real Sequences

Dr. Rajib Biswakarma Silapathar College, Silapathar, Assam-787059, India

Target Audience:BSc Mathematics(H)C2.1

Example

■ $< a_n >= < n^2 : n \in \mathbb{N} >= < n^2 >= < 1, 4, 9, ... >,$ Range of the sequence $= \{1, 4, 9, ...\},$ This sequence is not bounded above but bounded below we can take 1,0,-1,-2,0.5 etc. as lower bounds. Since the sequence is bounded below but not bounded above so it is not a bounded sequence.

(a_n) = (2 : n ∈ N) = (2, 2, 2, ...), Range of the sequence = {2}. This sequence is bounded above as well as bounded below we can take 1,2,0,-1,-2,0.5 etc. as lower bounds and 2,3,4 etc as uper bounds. Since the sequence is bounded below as well as bounded above so it is a bounded sequence.

Dr. Rajib Biswakarma Silapathar College, Silapathar, Assam-787059, India

Target Audience:BSc Mathematics(H)C2.1

Examples

Example

1 $< a_n > = < (-1)^n : n \in \mathbb{N} > = < -1, 1, -1, 1, ... >,$ Range of the sequence $= \{-1, 1\}$. Explain about boundedness of the sequence?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

2 $\langle a_n \rangle = \langle \frac{1}{n} : n \in \mathbb{N} \rangle = \langle 1, \frac{1}{2}, \frac{1}{3}, \dots \rangle$, Range of the sequence $= \{1, \frac{1}{2}, \frac{1}{3}, \dots\}$. Explain about boundedness of the sequence?

Real Sequences

Dr. Rajib Biswakarma Silapathar College, Silapathar, Assam-787059, India

Target Audience:BSc Mathematics(H)C2.1

Definition

A sequence $\langle a_n \rangle$ is said to converge to a real number l (or to have the real number l as its limit) if for every given $\epsilon > 0$, there exists a positive integer m (depending on ϵ) such that $|a_n - l| < \epsilon$, $\forall n \ge m$.

The same thing expressed in symbol is $a_n \rightarrow l$ as $n \rightarrow \infty$ or $\lim_{n \rightarrow \infty} a_n = l$.

Real Sequences

Dr. Rajib Biswakarma Silapathar College, Silapathar, Assam-787059, India

Example

Target Audience:BSc Mathematics(H)C2.1

Show that $\lim_{n\to\infty} \frac{1}{n} = 0$. **Proof:**- Let $a_n = \frac{1}{n}$. Let ϵ be any positive number. Therefore, $|a_n - 0| = |\frac{1}{n} - 0| = \frac{1}{n} < \epsilon$, if $n > \frac{1}{\epsilon}$. Let m be a positive integer $m > \frac{1}{\epsilon}$. Thus $|a_n - 0| < \epsilon$, $\forall n \ge m$. Hence $\lim_{n\to\infty} \frac{1}{n} = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Real Sequences

Dr. Rajib Biswakarma Silapathar College, Silapathar, Assam-787059, India

Example

Target Audience:BSc Mathematics(H)C2.1 Show that the constant sequence $\langle 2, 2, \ldots \rangle$ converges to 2. **Proof:**- Let $a_n = 2$. Let ϵ be any positive number. Therefore, $|a_n - 2| = 0 < \epsilon$, $\forall n \ge 1$. Let *m* be any positive integer. Thus $|a_n - 0| < \epsilon$, $\forall n \ge m$. Hence $\lim_{n\to\infty} 2 = 2$.

Real Sequences

Dr. Rajib Biswakarma Silapathar College, Silapathar, Assam-787059, India

Target Audience:BSc Mathematics(H)C2.1

Example

Show that $\lim_{n\to\infty} \frac{1+2+\ldots+n}{n^2} = \frac{1}{2}$. **Proof:**- Let $a_n = \frac{1+2+\ldots+n}{n^2} = \frac{n(n+1)}{2n^2}$. Let ϵ be any positive number. Therefore, $|a_n - \frac{1}{2}| = |\frac{1}{2} + \frac{1}{2n} - \frac{1}{2}| = \frac{1}{2n} < \epsilon$, if $n > \frac{1}{2\epsilon}$. Let m be a positive integer $m > \frac{1}{2\epsilon}$. Thus $|a_n - \frac{1}{2}| < \epsilon$, $\forall n \ge m$. Hence proved.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Dr. Rajib Biswakarma Silapathar College, Silapathar, Assam-787059, India

Target Audience:BSc Mathematics(H)C2.1

THANK YOU

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ