Dr. Rajib Biswakarma Silapathar College, Silapathar, Assam787059, India

Target
Audience:BSc Mathematics(H)C2.1

Real Sequences

Dr. Rajib Biswakarma

Silapathar College, Silapathar, Assam-787059, India
Target Audience:BSc Mathematics(H)C2.1

Content of the Course

Dr. Rajib
Biswakarma
Silapathar College, Silapathar,
Assam787059, India

Target
Audience:BSc Mathematics(H)C2.1

1 Basics of Sequences.
2 Examples.
3 Bounded Sequences.
4 Know about the inequality $|x|<k \Leftrightarrow-k<x<k$.
5 Examples.
6 Convergence of Sequences.
7 Examples.

Basics of Sequence

Dr. Rajib Biswakarma Silapathar College, Silapathar,
Assam787059, India

Target

Definition

A sequence is a function f with domain \mathbb{N} of natural numbers and the range contained in the set of real numbers \mathbb{R} i.e., $f: \mathbb{N} \rightarrow \mathbb{R}$.

Let the value of function f at $n \in \mathbb{N}$ is a_{n} i.e., $f(n)=a_{n}$. Thus a real sequence is denoted as $<a_{n}>$ and at $n=1,2, \ldots$ we have $f=a_{1}, a_{2}, \ldots$ respectively. Here a_{n} is the $n^{\text {th }}$ term or general term of the sequence.

Definition

The set of all distinct terms of sequences $<a_{n}>$ is called range set of the sequence.

Note: Range set of the sequence may be finite or infinite set but Sequence must be infinite.

Examples

Dr. Rajib Biswakarma Silapathar College, Silapathar,
Assam787059, India

Target Audience:BSc Mathematics(H)C2.1

Example

$1<a_{n}>=<n^{2}>, n \in \mathbb{N}$.
$2<a_{n}>=<2>, n \in \mathbb{N}$.
$3<a_{n}>=<(-1)^{n}>, n \in \mathbb{N}$.
$4<a_{n}>=<\frac{1}{n}>, n \in \mathbb{N}$.

Examples

Dr. Rajib Biswakarma Silapathar College, Silapathar,
Assam787059, India

Target
Audience:BSc Mathematics(H)C2.1

Example

$1<a_{n}>=<n^{2}: n \in \mathbb{N}>=<n^{2}>=<1,4,9, \ldots>$, Range of the sequence $=\{1,4,9, \ldots\}$
$2\left(a_{n}\right)=(2: n \in \mathbb{N})=(2,2,2, \ldots)$,
Range of the sequence $=\{2\}$.
$3<a_{n}>=<(-1)^{n}: n \in \mathbb{N}>=<-1,1,-1,1, \ldots>$,
Range of the sequence $=\{-1,1\}$.
$4<a_{n}>=<\frac{1}{n}: n \in \mathbb{N}>=<1, \frac{1}{2}, \frac{1}{3}, \ldots>$, Range of the sequence $=\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}$.

Bounded Sequences with Some Examples

Dr. Rajib Biswakarma Silapathar College, Silapathar,
Assam787059, India

Target
Audience:BSc Mathematics(H)C2.1

Definition

A sequence $X=<a_{n}>$ of real number is said to be bounded if there exists a real number $M>0$ such that $\left|a_{n}\right| \leq M, \forall n \in \mathbb{N}$.

Definition

A sequence $X=<a_{n}>$ of real number is said to be bounded above if there exists a real number M such that $a_{n} \leq M$, $\forall n \in \mathbb{N}$.

Definition

A sequence $X=<a_{n}>$ of real number is said to be bounded below if there exists a real number m such that $a_{n} \geq m$, $\forall n \in \mathbb{N}$.

Know about the inequality $|x|<k \Leftrightarrow-k<x<k$

Dr. Rajib Biswakarma Silapathar College, Silapathar,
Assam787059, India

Target Audience:BSc Mathematics(H)C2.1

For real numbers $x, k>0$ show that $|x|<k \Leftrightarrow-k<x<k$ proof:
We know that,

$$
|x|=\left\{\begin{array}{l}
x, \quad \text { when } x \geq 0 \\
-x, \quad \text { when } x<0
\end{array}\right.
$$

$\Rightarrow|x|=\max (x,-x)<k$
$\Leftrightarrow x<k \wedge-x<k$
$\Leftrightarrow x<k \wedge-k<x$
$\Leftrightarrow-k<x<k$

Examples

Dr. Rajib
Biswakarma Silapathar College, Silapathar,

Assam787059, India

Target Audience:BSc Mathematics(H)C2.1

Example

$1<a_{n}>=<n^{2}: n \in \mathbb{N}>=<n^{2}>=<1,4,9, \ldots>$,
Range of the sequence $=\{1,4,9, \ldots\}$,
This sequence is not bounded above but bounded below we can take $1,0,-1,-2,0.5$ etc. as lower bounds. Since the sequence is bounded below but not bounded above so it is not a bounded sequence.
$2\left(a_{n}\right)=(2: n \in \mathbb{N})=(2,2,2, \ldots)$,
Range of the sequence $=\{2\}$.
This sequence is bounded above as well as bounded below we can take 1,2,0,-1,-2,0.5 etc. as lower bounds and 2,3,4 etc as uper bounds. Since the sequence is bounded below as well as bounded above so it is a bounded sequence.

Examples

Dr. Rajib Biswakarma Silapathar College, Silapathar, Assam787059, India

Target
Audience:BSc Mathematics(H)C2.1

Example

$1<a_{n}>=<(-1)^{n}: n \in \mathbb{N}>=<-1,1,-1,1, \ldots>$, Range of the sequence $=\{-1,1\}$. Explain about boundedness of the sequence?
$2<a_{n}>=<\frac{1}{n}: n \in \mathbb{N}>=<1, \frac{1}{2}, \frac{1}{3}, \ldots>$, Range of the sequence $=\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}$. Explain about boundedness of the sequence?

Convergence of Sequences with Some Examples

Dr. Rajib
Biswakarma
Silapathar
College, Silapathar,
Assam787059, India

Target
Audience:BSc Mathematics(H)C2.1

Definition

A sequence $<a_{n}>$ is said to converge to a real number I (or to have the real number / as its limit) if for every given $\epsilon>0$, there exists a positive integer m (depending on ϵ) such that $\left|a_{n}-I\right|<\epsilon, \forall n \geq m$.
The same thing expressed in symbol is $a_{n} \rightarrow /$ as $n \rightarrow \infty$ or $\lim _{n \rightarrow \infty} a_{n}=l$.

Convergence of Sequences with Some Examples

Dr. Rajib
Biswakarma
Silapathar
College, Silapathar,
Assam787059, India

Target
Audience:BSc Mathematics(H)C2.1

Example

Show that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.
Proof:- Let $a_{n}=\frac{1}{n}$. Let ϵ be any positive number.
Therefore, $\left|a_{n}-0\right|=\left|\frac{1}{n}-0\right|=\frac{1}{n}<\epsilon$, if $n>\frac{1}{\epsilon}$.
Let m be a positive integer $m>\frac{1}{\epsilon}$. Thus $\left|a_{n}-0\right|<\epsilon, \forall n \geq m$. Hence $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.

Convergence of Sequences with Some Examples

Dr. Rajib
Biswakarma
Silapathar
College, Silapathar,
Assam787059, India

Target
Audience:BSc Mathematics(H)C2.1

Example

Show that the constant sequence $<2,2, \ldots\rangle$ converges to 2 .
Proof:- Let $a_{n}=2$. Let ϵ be any positive number.
Therefore, $\left|a_{n}-2\right|=0<\epsilon, \forall n \geq 1$.
Let m be any positive integer. Thus $\left|a_{n}-0\right|<\epsilon, \forall n \geq m$. Hence $\lim _{n \rightarrow \infty} 2=2$.

Convergence of Sequences with Some Examples

Dr. Rajib Biswakarma Silapathar College, Silapathar,
Assam787059, India

Target
Audience:BSc Mathematics(H)C2.1

Example

Show that $\lim _{n \rightarrow \infty} \frac{1+2+\ldots+n}{n^{2}}=\frac{1}{2}$.
Proof:- Let $a_{n}=\frac{1+2+\ldots+n}{n^{2}}=\frac{n(n+1)}{2 n^{2}}$. Let ϵ be any positive number.
Therefore, $\left|a_{n}-\frac{1}{2}\right|=\left|\frac{1}{2}+\frac{1}{2 n}-\frac{1}{2}\right|=\frac{1}{2 n}<\epsilon$, if $n>\frac{1}{2 \epsilon}$. Let m be a positive integer $m>\frac{1}{2 \epsilon}$. Thus $\left|a_{n}-\frac{1}{2}\right|<\epsilon$, $\forall n \geq m$. Hence proved.

Dr. Rajib
Biswakarma
Silapathar
College, Silapathar,
Assam787059,
India
Target
Audience:BSc
Mathemat-
ics(H)C2.1

THANK YOU

