What are Alcohols?

- Belong to a homologous series of organic compounds similar to alkanes and alkenes.
- The hydrocarbon chains contain the functional group -OH (hydroxyl group)

Naming Alcohol

Replace the 'e' with 'anol' at the end of the name of the hydrocarbon

Example:

ALCOHOLS

The organic compound which has -OH functional group are called **alcohols**. The general formula for alcohol is $C_nH_{2n+1}OH$ / R-OH.

Classification of Alcohol:

On the basis of -OH group attached to the carbon atom, alcohols are divided into three categories:

Primary alcohol: When the carbon atom attached to the hydroxyl group is bonded to only one carbon atom such type of alcohol is known as primary alcohol.

Secondary alcohol: When it is bonded to two carbon atoms such type of alcohol is known as **secondary alcohol**.

Tertiary alcohol: When it is bonded to three carbon atoms such type of alcohol is known as **tertiary alcohol**.

Primary alcohols OH CH₃-C-H CH₃-C-CH₃ OH CH₃-C-CH₃ CH₄ CH₅ CH₆ CH₆ CH₇ CH₇ CH₇ CH₇ CH₇ CH₈ CH₈ CH₈ CH₈ CH₈ CH₉ CH₉

S.Seetaram, Visit at www.pharmawisdom.co.in

Polyhydroxy Alcohols

- Alcohols that contain more than one OH group polyhydroxy alcohols.
- Monohydroxy: one OH group.
- Dihydroxy: two OH groups.
- Trihydroxy: three OH groups.

Grignard reactions of carbonyl compounds

 Formaldehyde (H₂C=O) reacts with Grignard reagents giving primary alcohol.

R-MgX +
$$H$$
 C=0 $\xrightarrow{\text{ether}}$ R- \dot{c} -0 $\xrightarrow{+}$ MgX $\xrightarrow{H_3O^+}$ R-CH₂-OH

or

Example:

butylmagnesium bromide

1-pentanol (92%)

Aldehydes reacts with Grignard reagents giving secondary alcohols.

or

Example:

Ketones reacts with Grignard reagents giving tertiary alcohols.

R-MgX +
$$R'$$
 C=0 $\xrightarrow{\text{ether}}$ R- \dot{C} -O⁻ + MgX $\xrightarrow{H_3O^+}$ R- \dot{C} -OH

or