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Unit-II 

 

Magnetic Force 

The force exerted by moving charges or current on each other is called magnetic force. For 

example force exerted by two parallel current carrying straight wires is magnetic force and it 

depends upon the direction and magnitude of currents, shape or relative positions of wires. 

 

Fig 1 

 

As shown in figure 1, a positive charge q is moving with a velocity ‘v’ in a magnetic field ‘B’ 

then a force ‘F’ is exerted on it  having magnitude:  

F= qv x B............. (1) 

And always directed perpendicular to both, magnetic field and velocity.  

Biot-Savart Law 
 

Considering two circuits carrying currents I1, and I2, as shown in fig 2. Let us suppose the 

elements of lengths dl1, and dl2 on the two circuits be distant r from each other. It is 

experimentally found that the force exerted on the current I1 by current I2, is given by, 

F^= 
μ0  

4π
 I1I2 ʃ1 ʃ2 

dl1 x (dl2 x r)   

r3  ................. (2) 

Where line integrals are calculated over two circuits.  μ0 is the permeability of free space and 

is numerically equal to 4π x 10-7 Henry per metre. This is the magnetic force law. 
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The expression for F^can be rewritten as 

F^= I1 ʃ1 dl1 x  
μ0  

4π
I2 ʃ2 

(dl2 x r)   

r3   

= I1 ʃ1 dl1 x  B2 

Where B2 = 
μ0  

4π
I2 ʃ2 

(dl2 x r)   

r3
......................(3) 

B2 is the magnetic field due to the circuit 2 at the position of the element dl1, of circuit l. This 

is called Biot-Savart law and gives the magnetic field due to a current carrying wire at a 

distance r from it. Dropping the suffix 2 in eqn. (3) we can write the Biot-Savart law as: 

 

B = 
 μ0   

4π
I ʃ 

(dl x r)   

r3                  ......................(4) 

 

The vector B, is called magnetic induction or magnetic flux density and is expressed in 

webers /met. The eqn. (4) can be used to find the magnetic field due to various configurations 

of current-carrying wire. 

From eqn. (4) we have, the magnetic field at a distance r due to an element of length dl of a 

wire carrying current is : 

   dB = 
 μ0   

4π
I  

(dl x r)   

r3              ......................(5) 

 

The vector dB is perpendicular to the plane containing dl and the point of observation as 

shown in fig (3). From eons (2)  and (5) we get, the force on an element of length dl of a wire 

carrying current I ( I dl is called current element) as : 

 

   dF = Idl x B  ......................(6) 

if the current is distributed in space having current density ₰ amp/met3 then 

   I dl = ₰ da dl= ₰ dv ....................(7); 

Where da is area of crossection and dv is volume. So  in general magnetic induction B 

can be written as: 

B = 
 μ0  

4π
 ʃ 

(₰ x r)   

r3
 𝑑𝑣               ......................(4) 

 

 

Applications of Biot-Savart Law 

1.Magnetic field due to long straight current carrying wire 

Let us calculate the magnetic field B as shown in figure a long straight wire having current 

‘I’. The magnetic field dB due to an elementary current element ‘Idl’ at a point P is given by:    



    

 

Fig 

dB = 
 μ0   

4π
I  

(dl Sinθ)   

r2
             ......................(1) 

so the magnetic field due to whole wire will be given by : 

B = 
 μ0I  

4π
 ∫

(dl Sinθ)   

r2

+∞

𝑙= −∞
 .............. (2);  

From figure it is clear that:   Sinθ = 
 𝑅  

r
 & r =√(R2+l2) .......... (3) 

Where R is the distance of the wire from point of observation. Form eqn. (3) in eqn. (2) 

 we have:   B = 
 μ0I 𝑅 

4π
 ∫   

dl   

r3

𝑙=+∞

𝑙= −∞
 = B = 

 μ0I 𝑅 

4π
 ∫   

dl   

√(R2+l2) 3

𝑙=+∞

𝑙= −∞
.............. (3);   

putting;  l= R tanɸ and dl = Rsec2ɸ dɸ................(4)  

we get;    B = 
μ0I  

4π𝑅
 ∫   cos

+𝜋/2

 −𝜋/2
ɸ dɸ  

B= 
 μ0  

4π
(

2I  

𝑅
)  ................................(5) 

The eqn. (5) can be used to define ampere, since 
 μ0  

4π
 is equal to 10-7 M.K.S current through a 

wire is one ampere when the magnetic field at one metre (R=1m) from it is 2 x l0-7 weber per 

square meter. 

 

Force between two long parallel wires carrying current 
Considering two long parallel wires distant R apart carrying currents I1 and I2, say, in the 

same direction (Fig.1). Let us find the force per unit length experienced by each wire. The 

magnetic field B at a point P on the second wire due to a current I1 is given by: 

B= 
 μ0  

4π
(

2I1  

𝑅
)  ................................(1) 

 

and is perpendicular to the plane containing the wire and the point of observation P and will 

be pointing into the paper as can be seen from right handed screw rule. 

The force on an element dl2 at P due to the field B from I1, is 

 

F=I2dl2  x B .........................(2) 



 
Fig 

Since dl2 is parallel to dl1 it will be perpendicular to the field B due to I1. Therefore we have 

 

F=I2dl2 B ............(3) 

Now from eqn. (1) in eqn. (3); 

  

     F=I2dl2 
 μ0

4π
(

2I1  

𝑅
)  ...........(4)  

 

Taking dl2 = 1; we have                      F= 
μ0  

4π
(

2I1I2  

𝑅
)   

The sign of the force is obtained from cross product. Now if  R=1 m, and I1=I2=1A, then  

      

     F=2 x 10-7 Newton 

Definition of 1 Ampere: In M.K.S. one ampere may defined as that current which when 

flows between two infinitely long straight parallel wires of negligible crossection placed in 

vacuum one meter apart carrying 1 ampere current each produces a transverse force of 

magnitude 2 x 10-7 Newton/met between the wires.  
 

Magnetic field along the axis of a circular coil 
Consider a circular coil of wire, say lying in the YZ plane, carrying a current I as shown in 

fig. The magnetic field at an axial point P can be calculated with the help of Biot-Savart law. 

Each element of the ring of length dl, contributes a magnetic field dB perpendicular to the 

radius vector r^. It is expressed as follows:. 
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dB = 
 μ0   

4π
I  

(dl x r)   

r3              ......................(5) 

 



The field dB will have two components, one parallel to the x-axis and other perpendicular to 

it. As the ring is symmetrical about the x-axis, the contributions dB due to elements of the 

ring lying diametrically opposite to x axis, will have y-component which is equal in 

magnitude but opposite in direction, so they all cancel and we are left with x component only.    

 

 dB = 
 μ0   

4π
 
(I dl )   

r2
              

The x-component of dB is given by,  

dBx = 
μ0   

4π
 
(I dl cosθ)   

r2      ......................(2) 

From figure cosθ = 
a   

r
; where ‘a’ is the radius of the ring. So eqn (2) becomes; 

dBx = 
 μ0   

4π
 
(I dl a)   

r3
     ...................... (3) 

Integrating equation (3) to get magnetic field at due to whole ring P which is at a distance x 

from the center of the ring; 

Bx =  ∮ dBx =  
μ0   

4π

(I a)   

r3 ∮  dl = 
 μ0   

4π

(I a)   

r3  2πa 

    Bx =
 μ0 I a2   

2r3  ..........................(4) 

Since  r=(a2  + x2)1/2 so      Bx =
 μ0 I a2   

2(a2 + x2)3/2 ;  

since dBx is the only component so dropping suffix;      

B =
μ0 I a2   

2(a2 + x2)
3
2

   
.............................(5); 

It is clear that magnetic field B varies inversely to the distance ‘r’ from the center.  

At the center of the ring x=0 so;   

B =
μ0 I a2   

2(a )3   =  
 μ0 I   

2a
.............................(6); 

If the coil has N turns then field at P will be N times so; 

    B =
 μ0N I a2   

2(a2 + x2)
3
2

   
         .............................(7); 

And at the center                B =  
 μ0 NI   

2a
         .............................(8); 

If point P lies very far from center then x>>a then eqn. (7) becomes;   

    B =
 μ0N I a2   

2 x3  = 
 μ0N I a2   

2 r3    .....................(9); (since x=r) 

As the area of crossection of the ring is A=πa2; so in terms of area we can write as; 

    B =
 μ0N I A   

2 πr3  
  .....................(10);  



the quantity M=N IA is called magnetic dipole moment so we can write eqn. (10) as follows; 

B =
 μ0   

4π
  

 2M

r3  
.....................(10) 

This formula can be used to calculate the variation of magnetic field due to a Helmholtz 

galvanometer. 

 

The magnetic due to current carrying solenoid 

When a coil of wire is wrapped in the form of a cylinder it is called a solenoid (Fig 1). Fig 2 

shows the crossectional view of a solenoid. The path of current in solenoid is helical but if 

turns are very closely wrapped this can be taken circular rings piled one over the other. Let 

the number of turns per unit length of solenoid is ‘n’. The magnetic field can be calculated at 

any point ‘P’ on the axis of the solenoid using eqn. as given below: 
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B =
 μ0 I a2   

2r3  ......................(1) 

Let us first calculate the contribution to the field, from the current rings in a small segment of 

length dx of the solenoid (fig. 2), which subtends angle θ and (θ+ dθ) with the axis at the 

point P. From fig 2 we can write: 

     sin θ = 
 r dθ  

dx
 ...................(2) 

      

dx=
 r dθ  

sin θ 
 ..........................(3) 

 

the number of turns in the length  dx = ndx= 
 nr dθ  

sin θ 
  

 

and total current in the length dx = I  
 nr dθ  

sin θ 
 ...................(4) 

 

where I is current in the solenoid  dB = 
μ0a2   

2r3   
   I nr dθ  

sin θ 
     ...................... (5) 

      

dB = 
 μ0nI sin θ dθ 

2
  .......(6)  (since 

 a2  

r2 = sin θ) 

 



 

Integrating it between θ1 and θ2 we have, 

      

B=
μ0nI 

2
∫  Sinθ dθ 

θ2 

θ1
=

 μ0nI 

2
 (cosθ1- cosθ2)..........(7) 

 

If the length of the solenoid is large as compared to its diameter then point P lies in the 

middle and θ1=0 and θ2=π then   

 

B=μ0nI ....................(8) 

 

This is also the field everywhere inside an infinitely long solenoid and the field due to 

an endless solenoid called toroid. 

If the point P lie at one end of the solenoid θ1=0 and θ2=
 π  

2
       then the magnetic field at P 

     B= 
 𝝁𝟎𝒏𝑰  

𝟐
....................(9) 

Equations (8) and (9) show, that the magnetic field at the end of a long solenoid is just half to 

that at center. The graph in fig 3 shows that field at centre of the solenoid remains nearly 

constant until we approach to one of the ends. 
 


