- 4. If $a \in \mathbb{R}$ satisfies $a \cdot a = a$, prove that either a = 0 or a = 1.
- 5. If $a \neq 0$ and $b \neq 0$, show that 1/(ab) = (1/a)(1/b).
- 6. Use the argument in the proof of Theorem 2.1.4 to show that there does not exist a rational number s such that $s^2 = 6$.
- 7. Modify the proof of Theorem 2.1.4 to show that there does not exist a rational number t such that $t^2 = 3$.
- 8 \sqrt{a} Show that if x, y are rational numbers, then x + y and xy are rational numbers.
 - (b) Prove that if x is a rational number and y is an irrational number, then x + y is an irrational number. If, in addition, $x \neq 0$, then show that xy is an irrational number.
- 9. Let $K := \{s + t\sqrt{2} : s, t \in \mathbb{Q}\}$. Show that K satisfies the following:
 - (a) If $x_1, x_2 \in K$, then $x_1 + x_2 \in K$ and $x_1x_2 \in K$.
 - (b) If $x \neq 0$ and $x \in K$, then $1/x \in K$.

(Thus the set K is a *subfield* of \mathbb{R} . With the order inherited from \mathbb{R} , the set K is an ordered field that lies between \mathbb{Q} and \mathbb{R} .)

- \checkmark 10. (a) If a < b and $c \le d$, prove that a + c < b + d.
 - (b) If 0 < a < b and $0 \le c \le d$, prove that $0 \le ac \le bd$.
 - 11. (a) Show that if a > 0, then 1/a > 0 and 1/(1/a) = a.
 - (b) Show that if a < b, then $a < \frac{1}{2}(a+b) < b$.
 - 12. Let a, b, c, d be numbers satisfying 0 < a < b and c < d < 0. Give an example where ac < bd, and one where bd < ac.
 - 13. If $a, b \in \mathbb{R}$, show that $a^2 + b^2 = 0$ if and only if a = 0 and b = 0.
 - 14. If $0 \le a < b$, show that $a^2 \le ab < b^2$. Show by example that it does *not* follow that $a^2 < ab < b^2$.
 - 15. If 0 < a < b, show that (a) $a < \sqrt{ab} < b$, and (b) 1/b < 1/a.
- \checkmark 16. Find all real numbers x that satisfy the following inequalities.
 - (a) $x^2 > 3x + 4$,

(b) $1 < x^2 < 4$,

(c) 1/x < x,

- (d) $1/x < x^2$.
- √17. Prove the following form of Theorem 2.1.9: If $a \in \mathbb{R}$ is such that $0 \le a \le \varepsilon$ for every $\varepsilon > 0$, then a = 0.
 - 18. Let $a, b \in \mathbb{R}$, and suppose that for every $\varepsilon > 0$ we have $a \le b + \varepsilon$. Show that $a \le b$.
 - 19. Prove that $\left[\frac{1}{2}(a+b)\right]^2 \le \frac{1}{2}(a^2+b^2)$ for all $a,b \in \mathbb{R}$. Show that equality holds if and only if a=b.
 - 20. (a) If 0 < c < 1, show that $0 < c^2 < c < 1$.
 - (b) If 1 < c, show that $1 < c < c^2$.
 - 21. (a) Prove there is no $n \in \mathbb{N}$ such that 0 < n < 1. (Use the Well-Ordering Property of \mathbb{N} .)
 - (b) Prove that no natural number can be both even and odd.
 - 22. (a) If c > 1, show that $c^n > c$ for all $n \in \mathbb{N}$, and that $c^n > c$ for n > 1.
 - (b) If 0 < c < 1, show that $c^n \le c$ for all $n \in \mathbb{N}$, and that $c^n < c$ for n > 1.
 - 23. If a > 0, b > 0, and $n \in \mathbb{N}$, show that a < b if and only if $a^n < b^n$. [*Hint*: Use Mathematical Induction.]
 - 24. (a) If c > 1 and $m, n \in \mathbb{N}$, show that $c^m > c^n$ if and only if m > n.
 - (b) If 0 < c < 1 and $m, n \in \mathbb{N}$, show that $c^m < c^n$ if and only if m > n.
 - 25. Assuming the existence of roots, show that if c > 1, then $c^{1/m} < c^{1/n}$ if and only if m > n.
 - 26. Use Mathematical Induction to show that if $a \in \mathbb{R}$ and $m, n \in \mathbb{N}$, then $a^{m+n} = a^m a^n$ and $(a^m) = a^{mn}$.